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Construction d’une porte logique
De quoi avons-nous eu besoin ?

Une référence de masse : 𝑉ss

Une source d’alimentation : 𝑉dd

Une équivalence électrique pour les niveaux logiques : 0 ≡ 𝑉ss, 1 ≡ 𝑉dd

Une charge résistive : 𝑅load
Un interrupteur contrôlé par une tension (référencée à 𝑉ss)

𝑉control = 0 : Interrupteur Ouvert
𝑉control = 𝑉dd : Interrupteur Fermé
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Porte NOT
Version schématique
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Porte NAND
Version schématique



5/62

Rappels Efficacité MOS Logique CMOS Efficacité CMOS Additionneur Temps de calcul *-adders × ÷

Porte NOR
Version schématique
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Limitations des logiques RTL/DTL/PMOS/NMOS/...

Problèmes :
Un courant permanent traverse la porte quand la sortie est à 0 :

On aimerait disposer d’une porte qui ne consomme de l’énergie que lorsqu’elle
change d’état…

Les physiciens ne savent pas réaliser des interrupteurs idéaux (à des températures
et des pressions raisonnables) :

La sortie de la porte n’atteint pas le niveau minimal 𝑉ss
Il n’est pas garanti qu’un assemblage de telles portes logiques soit fonctionnel
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Efficacité des interrupteurs MOS
Portes CMOS : les charges capacitives parasites

Les nœuds internes d’une porte logique CMOS ont des capacités parasites :
Capacité grille-source ou grille-drain (oxyde de grille)
Capacité source-substrat ou drain-substrat (diodes polarisées en inverse)

La sortie d’une porte logique est connectée à :
Des lignes métalliques de connexion (capacité parasite avec la masse, l’alimentation,
entre nœuds)
Des entrées d’autres portes logiques (grilles de transistors)

Tous ces éléments peuvent être modélisés par une capacité parasite équivalente
unique 𝐶par connectée entre la sortie de la porte et la masse

Qui doit être chargée pendant les transitions montantes de la sortie de la porte
Qui doit être déchargée pendant les transitions descendants de la sortie de la porte

Le temps de calcul d’une porte logique est directement lié au temps de charge et
de décharge de cette capacité.
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Le transistor NMOS est il un interrupteur efficace ?

Transistor NMOS déchargeant une capacité 𝐶u

Transistor NMOS chargeant une capacité 𝐶u
Cf simulation
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Efficacité des interrupteurs MOS
portes CMOS : les charges capacitives parasites

La mobilité des charges est différente parce que les composants sont différents
A dimensions et tensions (𝑉gs, 𝑉ds) identiques, le courant entre l’émetteur et le
collecteur (𝐼ds) change.
Le transistor PMOS est moins efficace que le transistor NMOS
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Interrupteurs empilés : l’effet de substrat

La source des transistors empilés n’est pas connectée à 𝑉ss

La tension de seuil du transistor croît avec 𝑉sb (la différence de potentiel entre la
source et le substrat)
Les transistors empilés sont moins efficaces…
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Efficacité des interrupteurs MOS

Quelques règles d’ingéniérie... :
Les transistors NMOS sont de préférence utilisés pour décharger des capacités
(génération du 0 logique).
Les transistors PMOS sont de préférence utilisés pour charger des capacités
(génération du 1 logique).
Pour une efficacité identique les transistors PMOS doivent être plus larges que les
transistors NMOS.
Les empilements de transistors doivent être limités à 3 or 4 transistors.
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Transistors MOS et niveaux logiques
Deux interrupteurs non idéaux

D

S
𝑉G

Un transistor NMOS dont la Source est
connectée à la masse.

𝑉G = 𝑉ss
interrupteur ouvert

𝑉G = 𝑉dd
interrupteur fermé

D

S

𝑉dd

𝑉G

Un transistor PMOS dont la Source est
connectée à l’alimentation

𝑉G = 𝑉ss
interrupteur fermé

𝑉G = 𝑉dd
interrupteur ouvert
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Inverseur CMOS

Valeur booléenne de l’entrée 𝐸 = 0
𝑉E = 0

NMOS bloqué
PMOS conducteur

𝑉S = 𝑉dd
→ Valeur booléenne de la sortie 𝑆 = 1

Valeur booléenne de l’entrée 𝐸 = 1
𝑉E = 𝑉dd

NMOS conducteur
PMOS bloqué

𝑉S = 0
→ Valeur booléenne de la sortie 𝑆 = 0

E S

𝑉dd

En première approximation : pas de consommation statique.
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CMOS : Porte NAND

A

B

A B

S

𝑉dd
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CMOS : Porte NOR
Le dual de NAND

A B

A

B

S

𝑉dd
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Logique CMOS
Généralisation à d’autres fonctions booléennes

Étant donnée la table de vérité d’une fonction booléenne :
Un réseau de transistors PMOS est utilisé pour générer les 1 de la table de vérité
Un réseau de transistors NMOS est utilisé pour générer les 0 de la table de vérité
Les fonctions logiques implémentables sont de la forme
𝐹(𝑥0, 𝑥1, … , 𝑥𝑛) = ∑ ∏ 𝑥𝑖

→ À savoir quoi ?
La porte contient un nombre de transistors PMOS
identique au nombre de transistors NMOS
Les autres fonctions booléennes seront réalisées en
assemblant ces portes CMOS primitives.
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Méthode de construction de fonctions logiques de la forme 𝐹 = ∑ ∏ 𝑥𝑖
Réseau NMOS

En premier, construire le réseau NMOS :
Exprimer la fonction 𝐹(𝑥0, 𝑥1, … , 𝑥𝑛) sous la forme ∑ ∏ 𝑥𝑖

Réaliser toutes les simplifications et factorisations possibles
Les ∏ restants correspondent à des séries de transistors NMOS (ou des séries de
réseaux de transistors NMOS)
Les ∑ restants correspondent à des transistors NMOS (ou des réseaux de
transistors NMOS) connectés en parallèle.
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Méthode de construction de fonctions logiques de la forme 𝐹 = ∑ ∏ 𝑥𝑖
Réseau PMOS

En second, construire le réseau PMOS :
Exprimer la fonction 𝐹(𝑥0, 𝑥1, … , 𝑥𝑛) sous la forme ∑ ∏ 𝑥𝑖

Réaliser toutes les simplifications et factorisations possibles
Les ∏ restants correspondent à des séries de transistors PMOS (ou des séries de
réseaux de transistors PMOS)
Les ∑ restants correspondent à des transistors PMOS (ou des réseaux de
transistors PMOS) connectés en parallèle.
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Méthode de construction de fonctions logiques de la forme 𝐹 = ∑ ∏ 𝑥𝑖
Remarques

Quelques remarques :
Les portes CMOS les plus simples sont des portes inverseuses (le NAND est plus
petit que le AND)
On peut utiliser 2 réseaux PMOS et NMOS de topologies duales :

Utiliser des réseaux de transistors PMOS en parallèle quand des réseaux de
transistors NMOS sont en série
Utiliser des réseaux de transistors PMOS en série quand des réseaux de transistors
NMOS sont en parallèle

Cette dernière méthode conduit souvent à des structures sous-optimales (d’un
point de vue électrique)
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Logique CMOS : analyse d’une porte
𝑍 = 𝐴 ⋅ 𝐵 + 𝐶 ⋅ (𝐷 + 𝐸)

Vss

E

C

D

Vdd

C

A

A

B

D

E

B

Z
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Exercice
Réseau optimal : 𝐹 = 𝐴 ⋅ 𝐵 + 𝐵 ⋅ 𝐶 + 𝐴 ⋅ 𝐶

1 Construire la porte en générant le
réseau NMOS et le réseau PMOS de
manière indépendante (𝐶 sera mis en
facteur)

2 Échanger le transistor NMOS 𝐶 avec
le réseau de transistors NMOS 𝐴/𝐵 :
y a-t-il une différence ?

3 Construire la porte en utilisant des
réseaux PMOS et NMOS duaux.

4 Quels sont les inconvénients d’une
telle structure ?

Vss

C

B BA

B

Vdd

C

A

A

A

B

Z
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Petit/Grand nombre d’entrés : l’exemple du AND6

Exemple de la porte AND6, procédé 28nm, tensions d’alimentation de 1V, tous les
transistors NMOS sont de tailles identiques, 𝑤𝑝/𝑤𝑛 = 1.6, pas de charge en sortie.
Cas testés : (1) Toutes les entrées changent en même temps , (2) Une seule
entrée change.

Temps de propagation en fonction de l’implémentation :

NAND6+INV

𝑇 𝑃 𝑅
1 = 53 ps

𝑇 𝑃 𝐹
1 = 18 ps

𝑇 𝑃 𝑅
2 = 33 ps

𝑇 𝑃 𝐹
2 = 11 ps

NAND3+NOR2

𝑇 𝑃 𝑅
1 = 19 ps

𝑇 𝑃 𝐹
1 = 5 ps

𝑇 𝑃 𝑅
2 = 19 ps

𝑇 𝑃 𝐹
2 = 9 ps

NAND2+NOR3

𝑇 𝑃 𝑅
1 = 27 ps

𝑇 𝑃 𝐹
1 = 4 ps

𝑇 𝑃 𝑅
2 = 18 ps

𝑇 𝑃 𝐹
2 = 9 ps
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Petit/Grand nombre d’entrés : l’exemple du AND6

Exercice pour ceux qui aiment la physique : définir un modèle simpliste du temps
de propagation en utilisant un modèle résistif simple.
Outre le temps le propagation, la consommation nécessite une étude similaire.

→ Voir Low-Power Digital VLSI Design : Circuits and Systems section 4.5.4.1.
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Réseaux PMOS/NMOS non complémentaires
Cas bloqué

Les réseaux NMOS et PMOS peuvent être
simultanément bloqués.
Cas typique d’utilisation : Entrées/Sorties sur bus
externe au circuit.
Exemple de circuit : inverseur 3-états.

EN A Z

0 0 hi-Z (haute impédance)
0 1 hi-Z (haute impédance)
1 0 1
1 1 0

Vdd

ZA

EN

EN
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Réseaux PMOS/NMOS non complémentaires
Cas passant

Les réseaux NMOS et PMOS peuvent être
simultanément passants.
Contrainte sur les entrées autorisées pour éviter les
courts-circuits.
Habituellement non géré par les outils automatiques
Exemple de circuit :

EN A Z

0 0 1
0 1 invalide (interdit)
1 0 hi-Z (haute impédance)
1 1 0

Vdd

Z

B

A



26/62

Rappels Efficacité MOS Logique CMOS Efficacité CMOS Additionneur Temps de calcul *-adders × ÷

Efficacité de la logique CMOS : critères de performance
Dual du cours précédent

Surface & Coût :
Plus la puce est petite, plus l’efficacité de production est élevée, et plus le coût de
fabrication est faible.

Utilisation de transistors plus petits (évolution technologique)
Utilisation d’un nombre réduit de transistors (choix architecturaux)

Vitesse :
Des portes logiques plus rapides impliquent une plus grande puissance de
traitement.

Comment augmenter la fréquence d’horloge ?
Consommation :
Le calcul implique une consommation électrique.

Comment minimiser cette consommation d’énergie ? (e.g. embarqué)
Comment évacuer la chaleur dissipée ? (e.g. datacenter)
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Délai d’une porte logique

Un modèle simple appliqué au cas simple d’un front montant sur l’entrée d’un
inverseur.

Hypothèse 1 : le front montant est de durée
nulle
Hypothèse 2 : la seule capacité parasite est
celle de la porte logique
Hypothèse 3 : le courant circulant à travers les
transistors pour la charge ou la décharge de la
capacité parasite 𝐶par est approximativement
égal au courant qui traverse le transistor

INV

E
S

Cpar
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Consommation électrique de la logique CMOS
Énergie dissipée v.s. énergie stockée

S

Vdd

ICpar

Cpar

Front montant (rising edge)

Cpar

Vdd

-ICpar

S

Front descendant (falling edge)
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Consommation électrique de la logique CMOS
Bilan énergétique

Charge : l’énergie provient de l’alimentation

𝐸𝑉dd
= 𝐶par ∫

𝑉dd

0
𝑉dd𝑑𝑉S = 𝐶par𝑉dd

2

Décharge : énergie stockée dans la capacité

𝐸𝐶par
= 𝐶par ∫

𝑉dd

0
𝑉S𝑑𝑉S = 𝐶par

𝑉dd
2

2

Dissipation de 𝐶par
𝑉dd

2

2 (dans les 2 sens)
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Consommation électrique de la logique CMOS
Consommation d’une puce complète

Soit 𝐶chip la capacité parasite totale de la puce
Soit 𝐹clk la fréquence de fonctionnement de l’horloge de la puce (logique
synchrone)
Soit 𝑇act la probabilité moyenne de transition des signaux pendant un seul cycle de
l’horloge (𝑇act ≈ 0.3).

Consommation de la puce complète

𝑃circuit ≈ 𝑇act𝐹clk𝐶chip𝑉dd
2
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Exercice
Le juste circuit CMOS

1 Quels sont les montages CMOS corrects ?
2 Pour les montages CMOS corrects, donnez la fonction logique.
3 Pour les autres, donnez un jeu d’entrées menant à un problème.
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Exercice

Circuit mystère CMOS

1 Que calcule le côté NMOS de ce circuit ? Et le côté PMOS ?
2 Conclure.
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Exercice

Circuit minorité en CMOS
1 Synthétisez la fonction XOR : 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐵. Quel est le nombre minimum de

transistors nécessaires ?
2 Synthétisez la fonction minorité a 3 entrées : Min(𝐴, 𝐵, 𝐶) = 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐶 + 𝐵 ⋅ 𝐶.

Trouvez une structure minimisant le nombre de transistors.
3 Montrez que Min(𝐴, 𝐵, 𝐶) = Max(𝐴, 𝐵, 𝐶), avec Maj la fonction majorité à 3

entrées.
4 Déduisez-en une structure symétrique entre les réseaux P et N.
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Addition

Revenons en primaire
Comment faire une addition de 2 nombres de 4 bits ?

Décomposition de l’addition
L’addition peut être décomposée en plusieurs additions élémentaires sur 1 bit.

+
si

ai bi

riri+ 1

a0 b0

s0

+
si

ai bi

riri+ 1

a1 b1

s1

+
si

ai bi

riri+ 1

a2 b2

s2

+
si

ai bi

riri+ 1

a3 b3

s3

r0

r1r2r3

r4
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Additionneur à propagation de retenue

Retenue en entrée et en sortie.

+

S

A B re

r
4

4 4
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Additionneur sur 1 bit (1/2)

Arithmétiquement
𝑎𝑖 + 𝑏𝑖 + 𝑟𝑖 = 2 ⋅ 𝑟𝑖+1 + 𝑠𝑖

Table de vérité
𝑎𝑖 𝑏𝑖 𝑟𝑖 𝑟𝑖+1 𝑠𝑖 Décimal

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 2
1 0 0 0 1 1
1 0 1 1 0 2
1 1 0 1 0 2
1 1 1 1 1 3



37/62

Rappels Efficacité MOS Logique CMOS Efficacité CMOS Additionneur Temps de calcul *-adders × ÷

Additionneur sur 1 bit (2/2)

Équations booléennes

𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 ⊕ 𝑟𝑖

𝑟𝑖+1 = 𝑎𝑖 ⋅ 𝑏𝑖 + 𝑎𝑖 ⋅ 𝑟𝑖 + 𝑏𝑖 ⋅ 𝑟𝑖

Schéma

si
ai

bi

ri

ri+ 1

(Une autre solution avec “half-adder” sera vue en TD.)



38/62

Rappels Efficacité MOS Logique CMOS Efficacité CMOS Additionneur Temps de calcul *-adders × ÷

Soustraction

Dans la quasi-totalité des cas, inutile de faire un surtout de soustraction dédié.
Hypothèse (globalement1 vraie de nos jours) : on code les nombres en complément à 2.

1 : voir C11 vs C23 (section, 6.2.6.2)

Soit 𝐵 un nombre codé en complément à 2 sur 𝑛 bits.
On a −𝐵 = 𝐵 + 1.
Pour faire 𝐴 − 𝐵, il suffit alors de calculer 𝐴 + (−𝐵) = 𝐴 + 𝐵 + 1.

On réutilise l’additionneur,
on ajoute des portes NOT pour faire 𝐵,
le 1 peut se rajouter directement dans 𝑟𝑒.
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Exercice

Vous avez 4 secondes
1 On se place dans l’arithmétique en complément à 2 sur 4 bits.

Soit 𝑋 = −8. Combien vaut −𝑋 ?
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Dynamique de l’addition
Dépassement de capacité pour l’addition non-signée

Nombres positifs
Pour deux nombres 𝐴 et 𝐵 représentés sur 𝑛 bits nous avons :

𝐴 ≤ 2𝑛 − 1
𝐵 ≤ 2𝑛 − 1

𝐴 + 𝐵 ≤ 2𝑛+1 − 2 < 2𝑛+1

𝐴 + 𝐵 est toujours représentable sur 𝑛 + 1 bits.
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Dynamique de l’addition
Dépassement de capacité pour l’addition signée

Nombres en complément à 2
Pour deux nombres 𝐴 et 𝐵 représentés en complément à 2 sur 𝑛 bits nous avons :

−2𝑛−1 ≤ 𝐴 ≤ 2𝑛−1 − 1
−2𝑛−1 ≤ 𝐵 ≤ 2𝑛−1 − 1

−2𝑛 ≤ 𝐴 + 𝐵 ≤ 2𝑛 − 2 < 2𝑛

𝐴 + 𝐵 est toujours représentable sur 𝑛 + 1 bits.
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Dynamique de l’addition
Interprétation de la retenue 1/2

Nombres en complément à 2
non signé CA2

1 1 1 7 − 1
+ 0 0 1 1 1
= 1 0 0 0 8 0 ou − 8?

non signé CA2
0 1 1 3 3

+ 0 0 1 1 1
= 1 0 0 4 − 4

non signé CA2
1 1 1 7 − 1

+ 1 0 0 4 − 4
= 1 0 1 1 11 + 3 + retenue ?

En complément à 2, l’interprétation de la retenue n’est pas la même que pour les
nombres non signés.
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Dynamique de l’addition
Interprétation de la retenue 2/2

En complément à 2, une solution simple pour toujours avoir le bon résultat est de
d’abord étendre les nombres sur un bit de plus puis faire la somme. La retenue
produite au delà du bit ajouté n’est pas prise en compte.

Nombres en complément à 2
1 1 1 1 − 1

+ 1 1 0 0 − 4

= 1 1 0 1 1 − 5

1 1 1 1 − 1
+ 0 0 0 1 1

= 1 0 0 0 0 0
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Exercice

Full-adder
1 Estimez le nombre de transistors

nécessaires à la fabrication de la
structure sur le schéma ci-contre.

2 Vérifiez que 𝑠𝑖 peut s’exprimer sous la
forme :
𝑠𝑖 = 𝑎𝑖 ⋅ 𝑏𝑖 ⋅ 𝑟𝑖 + 𝑟𝑖+1 ⋅ (𝑎𝑖 + 𝑏𝑖 + 𝑟𝑖)

3 En déduire une nouvelle construction
(sous forme de transistors)

4 Comparez les deux solutions

Schéma
𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 ⊕ 𝑟𝑖

𝑟𝑖+1 = 𝑎𝑖 ⋅ 𝑏𝑖 + 𝑎𝑖 ⋅ 𝑟𝑖 + 𝑏𝑖 ⋅ 𝑟𝑖

si
ai

bi

ri

ri+ 1
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Temps de propagation d’une porte

Les portes logiques respectent les lois de la physique. Les changement d’état ne
peuvent pas être instantanés.
Le temps de propagation est le temps entre le changement des entrées d’une porte
et la stabilisation de la valeur de sa sortie.
La valeur de la sortie n’est valide qu’après ce temps.
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Temps de propagation d’une porte sur un inverseur
Avec un modèle physique simple

E S

tp

t

e

t

s
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Temps de calcul d’une porte complexe

Les portes logiques de base sont pré-caractérisées.
Pour une technologie particulière, on connaît le temps de propagation des portes
de base.
À partir de ces tables on calcule le temps de propagation des portes complexes en
faisant la somme des temps individuels des portes qui se suivent.
Le temps de calcul d’une porte complexe est le temps de propagation du chemin
le plus long.
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Temps de calcul : exemple sur un full-adder

si
ai

bi

ri

ri+ 1

Considérons que le temps de
propagation est de :

1ns pour les portes AND et OR
2ns pour les portes XOR

Quel est le temps de propagation des
entrées vers chaque sortie ?
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Chemin critique

Définition
Le chemin critique est le plus long chemin possible en terme de temps de propagation.

+
si

ai bi

riri+ 1

a0 b0

s0

+
si

ai bi

riri+ 1

a1 b1

s1

+
si

ai bi

riri+ 1

a2 b2

s2

+
si

ai bi

riri+ 1

a3 b3

s3

r0

r1r2r3

r4

Exemple sur un additionneur 4-bits.
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Modèles du temps de propagation

On peut regarder des modèles de temps de propagation plus fins, e.g.

Un modèle plus précis de temps de propagation
On peut distinguer :

Le temps de propagation d’une entrée vers la sortie pour une transition
montante de la sortie.
Le temps de propagation d’une entrée vers la sortie pour une transition
descendante de la sortie.

Un autre modèle plus précis de temps de propagation
On peut définir un temps de propagation par type de porte et fan-out (nombre
d’entrées branchées à la sortie).
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Exercice

Comparateur
On désire réaliser un opérateur capable d’effectuer la comparaison de 2 nombres
positifs 𝐴 et 𝐵 codés sur 𝑛 bits. La sortie 𝑆 de l’opérateur vaut 1 si 𝐴 est strictement
inférieur à 𝐵, 0 sinon.

1 Proposer une solution à l’aide d’un soustracteur.
2 Proposer une solution en comparant bit à bit les nombres 𝐴 et 𝐵 en commençant

par les bits de poids forts.
3 Construire un opérateur élémentaire à 2 entrées 𝑎𝑖 et 𝑏𝑖 et 2 sorties 𝐼𝑖 (Inférieur)

et 𝐸𝑖 (Égal), pouvant servir à implémenter la solution précédente.
4 En utilisant l’opérateur construit précédemment, proposer le schéma complet du

comparateur.
5 Conclure sur l’intérêt par rapport la la solution à base de soustracteur.
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Une pluralité de méthodes pour faire un additionneur

Il existe de nombreux types d’additionneurs.

Ripple-carry adder (vu précédement)

Carry-lookahead adder (sera vu en TD)

Brent–Kung adder
Kogge–Stone adder
Carry-save adder
Carry-select adder
Carry-skip adder
Conditional Sum Adders
…

+
si

ai bi

riri+ 1

a0 b0

s0

+
si

ai bi

riri+ 1

a1 b1

s1

+
si

ai bi

riri+ 1

a2 b2

s2

+
si

ai bi

riri+ 1

a3 b3

s3

r0

r1r2r3

r4

Schéma pour un Ripple-carry adder.
Quel est le meilleur temps de propagation

possible pour un additionneur ?
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Carry-select adder
Version à taille fixe

Source : Wikipedia

Complexité : 𝑂(
√

𝑛)

https://en.wikipedia.org/wiki/File:Carry-select-adder-fixed-size.png
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Carry-select adder
Version à taille variable

Source : Wikipedia

Délai optimal avec l’hypothèse (douteuse) que la propagation d’un MUX et d’un
full-adder sont identiques.

Exemple réel sur un additionneur 32-bit (0.8µm CMOS, 3.3V) : 8-9-7-4-4.

https://en.wikipedia.org/wiki/File:Carry-select-adder-variable-size.png
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Carry-skip adder

Au tableau
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Multiplieur
Différentes approches

Tout comme pour les additionneurs, il existe de nombreux types de multiplieurs.

Braun multiplier
Baugh-Wooley multiplier
Booth multiplier & encoding
Wallace tree
Dadda multiplier
…

Revenons (encore !) en primaire
1 7 9 4
1 9 9 9

1 6 1 4 6
1 6 1 4 6

1 6 1 4 6
1 7 9 4
3 5 8 6 2 0 6

×
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Multiplieur de Braun

On veut calculer 𝑃 = 𝑋 ⋅ 𝑌.
On a : 𝑃 = ∑𝑛−1

𝑖=0 ∑𝑛−1
𝑗=0 2𝑖+𝑗 ⋅ 𝑥𝑖 ⋅ 𝑦𝑖

Attention : ne fonctionne que sur des nombres signés.
Schéma au tableau
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Multiplieur de Baugh-Wooley 1/2

Avantage : le multiplieur de Baugh-Wooley gère les nombres non-signés.

𝑃 = 𝑋 ⋅ 𝑌

= (−2𝑛−1𝑥𝑛−1 +
𝑛−2
∑
𝑖=0

2𝑖𝑥𝑖) (−𝑦𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

2𝑖𝑦𝑖)

= 22𝑛−2𝑥𝑛−1𝑦𝑛−1 +
𝑛−2
∑
𝑖=0

𝑛−2
∑
𝑗=0

2𝑖+𝑗𝑥𝑖𝑦𝑗

− 𝑥𝑛−1

𝑛−2
∑
𝑖=0

2𝑛+𝑖−1𝑦𝑖 − 𝑦𝑛−1

𝑛−2
∑
𝑖=0

2𝑛+𝑖−1𝑥𝑖

On enlève les soustractions :

−𝑥𝑛−1

𝑛−2
∑
𝑖=0

2𝑛+𝑖−1𝑦𝑖 = 𝑥𝑛−1 (−22𝑛−2 + 2𝑛−1 +
𝑛−2
∑
𝑖=0

2𝑛+𝑖−1𝑦𝑖)
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Multiplieur de Baugh-Wooley 2/2

Formule finale : (à apprendre par cœur pour l’examen)

𝑃 = − 22𝑛−1 + 22𝑛−2 (𝑥𝑛−1 + 𝑦𝑛−1 + 𝑥𝑛−1𝑦𝑛−1)

+
𝑛−2
∑
𝑖=0

𝑛−2
∑
𝑗=0

2𝑖+𝑗𝑥𝑖𝑦𝑗 + 2𝑛−1 (𝑥𝑛−1 + 𝑦𝑛−1)

+ 𝑥𝑛−1

𝑛−2
∑
𝑖=0

2𝑛+𝑖−1𝑦𝑖 + 𝑦𝑛−1

𝑛−2
∑
𝑖=0

2𝑛+𝑖−1𝑥𝑖

Schéma au tableau
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Diviseur
Version lente

Encore un peu de primaire ?

3 2 1 7 9 4− 2 9 4
2 7 7− 2 5 2

2 5 9− 2 5 2
7 4− 4 2
3 2

4 2
7 6 6 1

On veut calculer 𝐴/𝐷. Soit 𝑄 = 𝑞𝑛−1 … 𝑞𝑖 … 𝑞1𝑞0 le
dividende sur 𝑛 bits et 𝑅 le reste.
Rappel trivial : 𝐴 = 𝑄 ⋅ 𝐷 + 𝑅.

One recurrence to rule them all :

𝑅𝑖+1 = 𝐵 ⋅ 𝑅𝑖 − 𝑞𝑛−1−𝑖 ⋅ 𝐷

avec :
𝐵 : base utilisée (ici 2)
𝑅𝑖 : 𝑖-ème reste partiel de la division
𝑅0 = 𝐴, 𝑅 = 𝑅𝑛
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Diviseur
Algorithme

Restoring division
1 def r_divide(A, D):
2 Q = [None] * n
3 R = A
4 D = D << n
5 for i in reversed(range(n)):
6 R = 2 * R - D
7 if R >= 0:
8 Q[i] = 1
9 else:

10 Q[i] = 0
11 R = R + D
12 return Concat(*Q), R

Comment choisir 𝑛 ?

Non-restoring division
1 def nr_divide(A, D):
2 Q = [None] * n
3 R = A
4 D = D << n
5 for i in reversed(range(n)):
6 if R >= 0:
7 Q[i] = 1
8 R = 2 * R - D
9 else:

10 Q[i] = -1
11 R = 2 * R + D
12 return FixUp(Concat(*Q)), R

Comment réparer la sortie ?
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Diviseur
Version rapide

Pour aller plus loin :
Newton–Raphson division
Goldschmidt division
Division par une constante (je ne sais plus si c’est vu en cours de compilation)
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