
1/21

Architectures Pipelining Hiérarchie mémoire

Systèmes numériques : de l’algorithme aux circuits
Les processeurs du monde réel

Hadrien Barral (prenom.nom@ens.psl.eu)

Version : 1.1



2/21

Architectures Pipelining Hiérarchie mémoire

Qu’est ce qui existe comme architectures ?

Crédit : Épaurif

https://www.epaurif.fr/tous-nos-projets/restructuration-du-site-universitaire-de-montrouge/


3/21

Architectures Pipelining Hiérarchie mémoire

Qu’est ce qui existe comme architectures ?

https://en.wikipedia.org/wiki/Comparison_of_
instruction_set_architectures#Instruction_sets

(loin d’être exhaustif)

https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures#Instruction_sets
https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures#Instruction_sets


4/21

Architectures Pipelining Hiérarchie mémoire

Familles d’architectures
*ISC

RISC vs CISC vs …
CISC : Complex Instruction Set Computer
RISC : Reduced Instruction Set Computer

Qui est mieux ? Pourquoi ?

Pour aller plus loin : VLIW, ZISC, MISC, …



5/21

Architectures Pipelining Hiérarchie mémoire

Familles d’architectures
Usage

Microcontrolleur vs …
Calcul pur ou plusieurs entités sur le même matériel ?
Puissance électrique ou puissance de calcul ?



6/21

Architectures Pipelining Hiérarchie mémoire

Cours d’histoire

L’histoire étant écrite par les gagnants, on ne parlera que des architectures suivantes :
x86/AMD64
ARM
RISC-V



7/21

Architectures Pipelining Hiérarchie mémoire

Un peu d’histoire : Intel

Premier microprocesseur : Intel 4004 (1971), 4-bit
x86 : architecture 16-bit (1978), passage au 32-bit (1985), passage au 64-bit
(2003)

Poussé par AMD64, Intel voulait faire IA64…qui a été un échec.
Archétype de l’architecture CISC

Nécessité d’avoir un microcode
Intel fait l’architecture, la micro-architecture et fabrique les puces 1

Nombre de ventes en 2023 : 300 millions (à la grosse louche)

1. Voir conditions en magasin.



8/21

Architectures Pipelining Hiérarchie mémoire

Un peu d’histoire : ARM

Débuts avec l’ARM1 (1985)
25k transistors (10 fois moins que Intel à l’époque), mais très bonne efficacité
énergétique

ARM fait l’architecture et la micro-architecture, vend l’IP et délègue la fabrication
des puces 2

Passage au 64-bit en 2012
Architecture initialement RISC.

De nos jours, c’est compliqué car il y a Cortex A/R/M 3

1985-2025 : 250 milliards de puces vendues
À comparer au nombre d’humains sur ] − ∞; 2025] (<120 milliards)

2. Voir conditions en magasin.
3. Voir conditions en magasin.



9/21

Architectures Pipelining Hiérarchie mémoire

Un peu d’histoire : RISC-V

Début en 2010 (architecture uniquement). Focus sur une architecture libre
RISC-V fait spécification, d’autres font la micro-architecture, d’autres fabriquent
les puces

La specification est libre, mais pas nécéssairement le reste !
Still, plusieurs cores sont entièrement open-source et open-hardware

Architecture à la fois 32-bit et 64-bit depuis le début
Initialement RISC

→ de nos jours, plus nuancé, car multiples extensions existent
Pour l’instant relativement nouveau, peu de ventes 4

4. Et difficile à compter.



10/21

Architectures Pipelining Hiérarchie mémoire

Les base de l’architecture
Rappel



11/21

Architectures Pipelining Hiérarchie mémoire

Pipelining
Hypothèse

On se place dans le modèle du classic RISC pipeline :
1 Fetch : on charge l’instruction
2 Decode : on décode l’instruction et on lit les entrées (registre, flag, mémoire, …)
3 Execute : on traîte les entrées
4 Memory : (optionel) on accède à la mémoire
5 Write-back : On stocke les sorties (registre, flag, mémoire, …)

Source : Wikimedia

https://commons.wikimedia.org/wiki/File:Fivestagespipeline.png


12/21

Architectures Pipelining Hiérarchie mémoire

Pipeline hazards

Dans le pipelining, il existe des situations où l’instruction suivante ne peut pas être
exécutée au cycle d’horloge suivant. Ces événements sont appelés hazards.
Dit autrement, il y a hazard dans les situations où le pipelining produirait un mauvais
résultat.
3 types :

Structural hazard
Data hazard
Control hazard



13/21

Architectures Pipelining Hiérarchie mémoire

Structural hazards

Structural hazard : plusieurs instructions veulent utiliser la même ressource (e.g. la
mémoire ou l’ALU) en même temps.

Note : la classic pipeline RISC n’a par construction pas ce problème.
Sinon, une des instructions doit attendre.

Exercice
Que se passe-t-il si on a une mémoire unifié programme+données ?



14/21

Architectures Pipelining Hiérarchie mémoire

Data hazards

Data hazard : lorsqu’une instruction ne peut être exécutée au cycle d’horloge suivant
car les données nécessaires à son exécution ne sont pas encore disponibles.

Exemple
add x8, x1, x2
sub x9, x3, x8

Par défaut, blocage du pipeline (stalling).
Utopique de penser qu’un compilateur peut éviter tous les hazards
Solution classique No 1 : forwarding (aussi nommé bypassing)
Solution classique No 2 : interlock



15/21

Architectures Pipelining Hiérarchie mémoire

Data hazards
Forwarding

Forwarding : on récupères les entrées directement depuis les buffers internes plutôt que
depuis les entrées programmer-visible.

Exemple
add x8, x1, x2
sub x9, x3, x8

Clock Cycle

1 2 3 4 5 6

IF ID MEM WB

IF ID MEM WB

EX

EX

fetches
old data

new data bypassed

Source : Wikimedia

https://commons.wikimedia.org/wiki/File:Data_Forwarding_(One_Stage).svg


16/21

Architectures Pipelining Hiérarchie mémoire

Data hazards
Interlock

Exemple
lw x2, 0(r1)
add x9, x2, x3

Clock Cycle

1 2 3 4 5 6

IF ID MEM WB

IF ID MEM WB

EX

EX

fetches
old data

cannot bypass
backwards

Clock Cycle

1 2 3 4 5 6

IF ID MEM WB

IF ID MEM WB

EX

EX

fetches
old data

bubble
inserted

data bypassed
forwards

7



17/21

Architectures Pipelining Hiérarchie mémoire

Data hazards
Forwarding

Exercice
x = a + b;
y = a + c;

ld x1, 0(x31) // Load a
ld x2, 8(x31) // Load b
add x3, x1, x2 // a + b
sd x3, 24(x31) // Store x
ld x4, 16(x31) // Load c
add x5, x1, x4 // a + c
sd x5, 32(x31) // Store y

1 Trouvez les hazards.
2 Réordonnez les instructions pour faire

mieux.

Rappel pipeline :

IF ID MEM WBEX



18/21

Architectures Pipelining Hiérarchie mémoire

Control hazards

Control hazard : lorsque l’instruction appropriée ne peut pas être exécutée au cycle
suivant parce que l’instruction qui a été chargée n’est pas celle qui est nécessaire. Dit
autrement, que le flux des adresses d’instructions du pipeline n’est pas celui attendu.

Exemple
start: add x1, x1, x3

beq x1, x0, start
sltiu x5, x6, x7

Est-ce un vrai problème en pratique pour les performances ? → OUI !



19/21

Architectures Pipelining Hiérarchie mémoire

Control hazards
Résolution

Comment gérer ce problème ? →
Predict Not Taken 🤪
Branch Likely 😅
Branch Delay Slot 🤮
Branch Prediction 🔮



20/21

Architectures Pipelining Hiérarchie mémoire

Exemples sur de vrais CPUs

Computer Organization and Design : The Hardware / Software Interface : Risc-V
Edition, section 4.11
https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important
https://en.wikichip.org/

https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important
https://en.wikichip.org/


21/21

Architectures Pipelining Hiérarchie mémoire

Hiérarchie mémoire

(au tableau)


	Architectures
	Pipelining
	Hiérarchie mémoire

