ENS L3 : "Systemes numériques :
de l'algorithme aux circuits”

Lecon : langages de description de matériel

Sumanta Chaudhuri
19 Decembre 2023

Programme

Verilog
- Synthetisability
EDA (Electronic Design Automation)

- Standard Cell Design
- Qflow Example

FPGA Architecture

- EDA for FPGA
- VPR example

Exercices : TD en ligne

Niveaux de description

e Transaction-Level Model

* Register-Transfert Level :

- Comportemental
- dataflow

* Netlist (structurel)

Langages

e System-C (IEEE 1666)

- Testbench
- Dimensionnement de performances

e Verilog (IEEE 1076), VHDL (IEEE 1364)

- Simulation + synthese
- Netlist

SystemC

#include "systemc.h"

SC MODULE (adder) // module (class) declaration
{

sc_1n<int> a, b; // ports

sC_out<int> sum;

vold do add() // process
{

sum.write(a.read() + b.read()); //or just sum = a + b

}

SC CTOR(adder) // constructor
{
SC METHOD(do add); // register do add to kernel
sensitive << a << b; // sensitivity list of do add
}
}i

Syntaxe Verilog

// Here is a module definition, called FRED
module FRED(q, a, b);

input a, b; // These are the inputs
output q; // Make sure your comments are helpful
/oo Guts of module go here
endmodule

// Here is a module definition with two input busses

module FRED(q, d, e);
input [4:0] d, e; // Ports d and e are each five bit busses
output q; // q is still one bit wide

endmodule

Syntaxe Verilog

/{ Here are some local nets being defined
module FRED(q, a);
input a;
output q;
wire [2:0] xbus, ybus; // Two local busses of three bits each
wire parity_x, parity_y; // Two simple local signals.

// Here is a module definition with submodule instances.
module FRED(q, a, b);

input a, b; // These are the inputs
output q; // Make sure your comments are helpful
wire gbar; // Local, unported net

NOR2 mygate(q, a, gbar), myothergate(gbar, b, q);
endmodule

Syntaxe Verilog

// Here is a module definition with named port mapping.
module FRED(q, a, b);

input a, b; // These are the inputs
output q; // Make sure your comments are helpful
wire gbar; // Local, unported net

NOR2 mygate(.x1(a), .y(q), .x2(gbar)),

myothergate(.y(gbar), .x2(gq), .x1(b));
endmodule

Syntaxe Verilog

assign <signal> = <signal-exXpression> ;
For example

wire p;
assign p = (q & r) | ("r & "s);

Ily a 123 mots réservés
dans verilog !

Syntaxic sugar

wirep=(q&r) | ("r & "s);

Syntaxe Verilog

wire [7:0] busi, clipbus;
assign clipbus = (busl > 8°’d127) 7 8’d127 : busi;

wire [23:0] mybus = yourbus & 24°b11110000_11110000_00001111;

wire [11:0] boo:

input [3:0] src;

assign boo[11:8] = src;
assign boo[7:4] = 4°b0;
assign boo[3:0] = src + 4’d1;

wire [31:0] dbus;

wire bit7 = dbus[7];

wire [7:0] lowsevenbits = dbus[7:0];
wire [31:0] swapbus = dbus[0:31];

assign boo = { src, 4’b0, src + 4°dl };

Syntaxe Verilog

Symbol | Function Resultant width Symbol | Function
~ monadic negate as input width & and
— monadic complement (*) as input width | or
| monadic logic not unit - XOr
o unsigned binary multiply (*) sum of arg widths “& and with final invert
/ unsigned binary division (*) difference of arg widths | or with final invert
i unsigned binary modulus (*) width of rhs arg - xor with final invert
+ unsigned binary addition maximum of input widths
— unsigned binary subtraction maximum of input widths | wire [9:0] mybus;
>> right s.hift operator as left argument wire x = (& (mybus));
<< left shift operator as left argument
== net /bus comparison unit
= inverted net /bus compare operator | unit
< bus compare operator unit
> bus compare operator unit)
= bus compare operator unit wire yes = p > I,
<= bus compare operator unit
& diadic bitwise and maximum of both inputs
- diadic bitwise xor maximum of both inputs _
i diadic bitwise xnor (*) maximum of both inputs Ternaires :
| diadic bitwise or maximum of both inputs
&& | diadic logical and unit wize [1:01 p, q,
I diadic logical or unit
7 conditional expression maximum of data inputs b gg%]1:“3; i Esg; b ?;1) 7q:T;
wire [7: us s0) 7 p: (s1) 7 q: r;

Syntaxe Verilog : combinatoire

always @(aal_counter) case (aal_counter) // full_case
0: aal_header <= 8’h00;
1: aal_header <= 8’hiT7;
2: aal_header <= 8’h2D;
3: aal_header <= 8’h3A;
default: aal_header <= 8’h74;
endcase

Syntaxe Verilog : sequentiel

module EXAMPLE(ck, ex):

input ck; // This is the clock input

output ex;

reg ex, ez; // ex is both a register and an output
reg [2:0] q; // q is a local register for counting.

always @(posedge ck)
begin
if (ez) begin
if (q == 2) ex <= 1; else ex <= “ex;

q <= q + 3’d1;

end
ez <= Tez;
end
endmodule

e ez . compteur modulo 2
e ¢ : compteur modulo 23, avec enable sur ez
» ex . est affecté 2x, mais sous des conditions différentes

Petits exemples de codes en Verilog

Nand Gate 2 input Mux oond

a 80
y
b al

Petits exemples de codes en Verilog

D-type FF Accumulator
dk
d d q 16
data \Vi
clk > 16
+]‘,."" dq gb
"On the positive edge of the dock
the value on the d input is copied to /
the q oufput”
qoutp ":16
wire [15..0] gb;
always &(posedge clk) g == d; reg [15..0] data
always @ (posedge clk) gb <= gb+data;

Petits exemples de codes en Verilog

Little Circuit (pulse generator).

module |CCT(d, clk, op);

input d, clk;
output op;
reg op;

reg vl, vZ;

always & (posedge clk)
bhegin
vl <= d; ck
w2 == vl;
op <= vl B ~v2;
end

endmodule

RN

* Performs aggressive timing driven re-structuring, mapping and gate-level
optimization.
* Logic duplication for reducing the load seen by the critical path.

* Buffer high fan out nets to improve total negative slack.

- Tl

e >—

Figure 5. Register duplication [1]

Semiconductor Manufacturing

* https://bit.ly/3gJVriL

https://bit.ly/3qJVrfL

EDA

[RTL Coding & Simulation
Functional Verification

N A

.

-

L 4

R2M Equivalent Check RTL Code Synthesis &
with Power Intent File Scan Chain Insertion

-

P Static Timing Analysis
b Gate-level Simulation

v

] { Fower Intent Fila]

N2N Equivalent Check [-)
with Power Intent File] Flaorplan & Partilion

.

Block & Top
Implementation

)

Timing Closure Analysis

.

IRIEM Analysis

y

Phwsical Werification

!

Tape-out

Test des circuits intégres

Deux modes, en fonction de TEN
Multiplexer

ﬁ I'lip=tlop

Multiplexer

0 Flip-flop T
[test ot
PR

T1 (test in)

TEN [test enable]

L]
v

TCLE (test clock)VCLK

Test des cartes électroniques
Boundary-scan, défini dans le standard IEEE Std.-1149.1

Farallel in

PPPPP

BRETEEE

Stimulus Response
U1 U2
10001 i} »Jl] 10001
~ Short
10010 J— »Jl] 10000
10100 [»J] 10000
Open
11000 —— A—J 11111

Standard Cells

PWR
Large ISmalll Very Large Small Tin
Cell Cell Cell Cell Cell
GND
Large Smalll Very Large Tin
Cell Cell Cell Ce

PWR

Vérifications finales

The three basic DRC checks DRC : Design Rules Check

LVS : Layout Versus Schematic

Width

Enclosure

ot |

Spacing

—

o ocomparewith f W

il
|

QFLOW Example

* sudo apt-get install gflow

Standard Cells : Interesting bits

* Clock Tree Synthesis

* Cell Dimension (Rent’s rule)
- T=tGP

— T : No of output wires
— T :average number of pins

— G : No. Of gates

— P : Rent’s parameter

 How many tracks can run over each cell ?

Commands

set_clock uncertainty

3]
d Models clock skew affects on the _
clock. CLK Clock Latency _E ‘ e
J After CTS real propagated skew is) > ; Lk ”ED
considered. [E’rﬁnmw
n-q> ' Wla 1]

d set_clock_uncertainty [-from from_clock] [-rise_fromrise from clock] [-fall_from
fall_from clock] [-to to_clock] [-rise_to rise_to clock] [-fall_to fall _to_clock] [-rise] [-
fall] [-setup] [-hold] uncertainty [object list]

] # Specifies the clock uncertainty for clocks or for clock-to-clock transfers.
Examples:
] set clock uncertainty -setup -rise -fall 0.2 [get_clocks CLK2]
1 set_clock uncertainty -from [get_clocks HSCLK] -to [get_clocks SYSCLK] -hold 0.35
J:I set_clock uncertainty —setup 0.475 clock
set clock_uncertainty—hold 0.27 clock

TOETC SYTTITESIS Oy T asie-enr O S IO Lo (hug

FPGA Architecture

(a) Basic logic element (BLE)

:

BLE
#1

il

| Bg :
BLEs Outputs

BLE
#N

/\

|

Clock (b) Logic cluster

I
Inputs -

Fig. 1. Structure of basic logic element (BLE) and logic cluster.

FPGA Architecture

| |

| |

| |

| |

| j — d |

L i N | N

| 1 . |

BLEs | Outputs

|

| j |

| F— BLE |

|] #N |

I | A\ |< —

Inputs | — | ~
Clock +—7vn—r—++—-—-_ _ _ _ _ _ _ _ _|

Logic cluster

Figure 3: Logic cluster structure.

4 of 12

FPGA Architecture

Programmabl e routing switch

Short wire

0 / segnent

Logi c
bl ock

(onnection /'/
bl ock\N A1

Pr ogr ammabl e/

connection
box

Long wire
segnent
% /
Switch
/ bl ock

FPGA Architecture

Channel

Width
(W)
PN /o
SB CB SB CB SB CB SB
Vertical Routing
/
Channel
1/0 Block CB LAB CB LAB CB LAB CBl |5
Switch Box
SB CB SB CB SB CB SB (SB)
Logic Array
Block (LAB) -4
S| | CB LAB CB LAB CB LAB CB| |3
Routing
1 Architecture
Example
SB CB SB CB SB CB SB
Horizontal
Routing Channel \\\ Connection
- Box
3| CB LAB CB LAB CB LAB CB| |5
SB CB SB CB SB CB SB

1/0

/0

Programmahble
Interconnects

. T h = po—
Blocks L B e N o B o B[] | eni -
LR TR PR R |0

FPGA Design e

- Testbench, synthesis
Text, ASDB,
Schematic, VCD
FSM

IP

FINISH

documentation

VPR Example

* git clone
https://github.com/verilog-to-routing/vtr-verilog-
to-routing.qgit

EDA Algorithms

OUly ouT®3 | ons
ut = 3PS
ouT2 | > ons
np = 1

C'"2—» G"2 - OUT"2 —8ns
D"2—» H"2 - OUT"? —7ns
E"2—» H"2 - OUT"2— 10ns

= 1ns
a_| — A2 5 F125 Gg'2 5 QUT 2
B2 5 F125 G'2 5 QUT 2
onp = 1
& = Ons 1ns
& = 3ns
E D S,np = 1ns

—Oons

—11ns

Converting to Graph

(20D @
’//// <0,3>
--

<0,2,4>
@ @ @ @
03,5 bo<02> <0,3>

@0@9@0@@

<0345 ‘ 4>

@@ @@

<0,4,5 <0,3,6>
@@ om
<0,4,5,6,7,8>

<0]BSJ01y//

EDA Algotithms

Placement

— MinCut Partition
- Simulated Annealing

Routing

— Dijkstra’s Algorithm
- Maze router

Static Timing Analysis
LVS

— Graph Isomorphism

TD (Travaux Dirigés)

* Exercice :

- https://perso.telecom-paristech.fr/guilley/EN
S/20171205/TP/

* Entrainement de type MOOC .
- http://hdl.telecom-paristech.fr/

http://hdl.telecom-paristech.fr/
https://perso.telecom-paristech.fr/guilley/ENS/20171205/TP/
https://perso.telecom-paristech.fr/guilley/ENS/20171205/TP/

Exercice 1 : Incrémenteur

Exercice 2 : FSM

Exercice 3 : Synthetisabilité

Synthétisabilité

Unsupported Verilog Language Constructs

Synthesis tools are not so intelligent. They try to infer hardware from HDL description.
Most synthesis tools does not support the following Verilog constructs:

» Unsupported definitions and declarations

- primitive definition

- time declaration

- event declaration

- triand, trior, tril, tri®, andtriregnet types

- Ranges and arrays for integers

* Unsupported operators

* Unsupported statemenis - Case equality and inequality operators (=== and !==

- defparam statement - Division and modulus operators for variables

- initial statement

- repeat statement » Unsupported gate-level constructs

- dElﬂ}F control - NMOS, pmos, cmos, ramos, rpmos, rcmos, pullup, pulldown,
- event control tranif®, tranifl, rtran, rtrainfe, andrtrainfigate types
- wait statement

- fork-join statements * Unsupported miscellaneous constructs

- deassign statement - Hierarchical names within a module

- force statement

- release statement

- Assignment statement with a variable used as a bit-select on the left side of the
equal sign

Exercice 4 : SWAP

Exercice 5 : BitSlicing (MAX)

Exercice 6 : AES

Sboxes en cryptographie (sym.)

Great question! You only need to
know 3 big ideas to understand
crypto.

V4

1 /\
1 AES : Advanced Encryption Standard

NIST FIPS 197
Included in ISO/IEC 18033-3 standard

LBis Ideao #I: Con'FusionJ

It's o 9ood idea to obscure the relaﬂonship
berween your real message and your 'encryp-red'
message. An example of this confusion” is the
trusty ol' Caesar Cipher:

i - %

Paintext: A TTACK AT DAWN

T I A A R A A
Ciphertexr: DWWDFN DW GDZQ

A+ 3 letrers = D

_

|Big Idea #2: Diffusion]

IJt+'s also a gaad idea to spread out the
message. :"in eunmple m‘ this ‘c:h'F'I;m.-.'.i+r.:rr':+'r

is & :imple ::alumn fran:-paai-rlam
o

ACD, TKA TAW ATN

)\B_i:? Idea #3: 5£cr£c}f Only in the ﬁey

ffrer thousands of years, we learned
that it's a bad idea to assume that no
ane knﬂWﬁ hﬂw }"ﬂl.l!"' M'E"l'hﬂd wal"l'l:a
Someone will Evtn*run“}f 'Flnd that out.

/ —

Tell me how i+ worksl

Tell me how it worksl

Ok... Ne preblem! I+'s
Great! Mow 1 o ikip-:dia., but
can decode I don't know the

f"ﬂ'l"l!!"}"l’hll"lﬂi FH;"' "n.

f]:}m-ral '

JE T T
-=—ﬂ.
) |1
=] el

/)
BAD BETTEF

A Tribute to XOR |

There's a aimple reason """'h?' T use xor +o nFF|}r the I'{E?‘

ancl' 1g] .-:--rh:r‘ al:m-rm i-r'a 'Faa-r nnd :henp - a qul-:’r: bi-r
ﬂlpp:r. I'r uses minimn'l hardwnra and can ba dﬂ-ﬁﬁ 1g]
/Famllel since no pesky ‘carry birs are needed.

A res U @

—Q

i

‘ﬂpplying Confusion: Substitute By-rea r

R — (Big Tdeo #lI) to obscure the
reln-rianahip of each i?f-re. g put each b te

into o substitution box (aba:), which will maop
,it to a different byte:

Pcnafea &E;} b
Y confusion Ebbg
i pODD

SubBytes = Substitute Bytes

0 [x1 | =2 | x3 | x4 | x> | x6 | =7 x8 | x9 | xa | xb | xc | xd | xe | xf
ODx | 62 | T | 77 | Tb f2 el ef | =5 | 30 | 01 67 | Zb fe | d7 | ab | 76
lx | ca g2 c9 | T7d fa | 29 &7 f£f0 ad | d4 az at Sc ad T2 c0
2x | b7 fd | 93 | 26 | 36 | 3£ £f7 | co | 24 (a5 | eS| £1 | 71 | d8 | 31 13
dx | 04 | =7 23 | =3 18 56 03 | Sa 07 12 BO | =2 eb | 27 | bZ T3
4x | 09 | B3 | 2c | 1la 1 | 6e | Sa | a0 | 22 | 3b | de | B3 | 29 | 23 | 2 H4
Sx | 532 | dl1 00 [ed | 20 | £= | b1 | S ca | cb | be | 359 45 4z | 58 cf
ex | A0 | ef | aa | £b 43 | 4d | 23 | B85 45 | £5 0z [7€ | 50 | 3= | S£ | aB
Tx [51 | a3 40 | B 52 5d | 38 £f3 | b | be | da | 21 10 £tf | £32 | dZ2
Bx | od | Oc 13 | ec | 5£ | 57 44 17 cd | a7l TJe | 3d | &4 5d [19 | 73
Sx | €0 | 81 2f | de | 22 | 2a 50 | BH 4c | ee | bB 14 de | 22 | Ob | db
ax | e0 | 22 2a Da 45 06 24 Sc c2 d3 ac &2 51 55 | 24 =
bx | 27 cH 37 ed Bd | A5 L= | a5 bc | 56 £4 2a 65 Ta | as 08
cx | bha | 78 25 | Ze lc | a6t | b4 | c6 | =28 | dd | 74 1f 4b | bd | 8k Ba
dx [70 | 3e | b5 | &6 48 03 fa | Oe 6l | 35 | 57 | b5 B | 1 | 1d | 5e
ex | 21 | £8 58 11 69 | dS Be | 94 Sb | 1le 87 | 9 | ce | 35 | Z8 df
fx | 8z | al B9 | 0d | bEf | 26 4 2 o8 41 | 95 | 2d | 0f | 2O | 24 | bBb 16

LLLLLLLL

R

=

Hardware view

ids

SBOX

d- :%r V1 X9 H[(7
ds [}— »e xe — | as
il :% Vs X3 ﬁ[(s
ds | |—> »s xw —]a Inverse
d, H s s { s SBOX
i :%r Va X3 { (s
d; :%- Vi X { a
dy :%r Yo X H[()

— Vs
— Vs
— Vs
— 3
— 12
— Vi

— Vo

rary ieee

ieee. . std_logic_1164. a1l
ieee. numeric_std.zl1l
work .matrix_pkg.all

[Il

(%]

m M g

(%3]

v shox is
shox_type
-i_ -
state_1i in byte
state_o out byte

architecture rtl of sbox is

rom_x8 is array
L rom256x8 rom_x8

sbox_ram_gen: 1T sbox_type
clk

begin
if falling_edge(clk’) then
state_o rom256x8 to_integer state_1i

Synthese logique

set_attribute library

read_hdl -wvhdl

elaborate
synthesize -to_mapped

write hdl -v2801 > top.vm

report
report
report
report
report
report

quit

power = rpt_power.txt
area = rpt_area.txt
memory = rpt_memory.txt

gates > rpt_gates.txt

timing > rpt_timing.txt
timing -lint > rpt_timing.txt

@ = @ cadence Encounter{R)RTL CompilerRC14.25 -v14.20-5s046_1 - fcal/homes/quilley/sic/DEV/Smart SIC +/Sources/sensor_130nm/syn

Eile DFT Eloorplan Power Timing Tools Windows Help cédencel
[
Hierarchy | HDL B Schematic
C IF4-| I-| I. .I
e | QQQe NEHS o
f—]—l_ﬂEE laes_256_fast)

—i_sensor

Iél—:.es_i nst [aes_key length2

I_J—]—:i[:'.'ner_insr_ [cipher ke:

addroundkey_inst [ac

mixcolumns_inst [mi:

state_inst [state_ke
subbytes_inst [subbs
—sbox_subbytes_ger
—ebox_ subbytes_ger
—sbox_subbytes_ger
—sbox_subbytes_ger
—sbox_ subbytes_ger
—sbox_subbytes_ger
—sbox_subbytes_ger
—sbox_subbytes_ger
—ebox_ subbytes_ger
—sbox_ subbytes_ger
—ebox_ subbytes_ger
—sbox_subbytes_ger
—ebox_ subbytes_ger

—sbox_subbytes_ger

'—sbox_subbytes_ger

—fsm_inst [fsm_key leng

ke

rexpansion_inst [key

[sensor]

HNet:

El

1 JHIE

top+i_aes+aes_inst+cipher_inst+subbytes_inst+shox<_subhbytes_gen[1].shox_subbytes_inst 1

Design is mapped

auto update: 2000

Decode — Permute - Encode

Decode ' Permute: Encode

In the polynomial representation, multiplication in GF(2") (denoted by ®) corresponds with the
multiplication of polynomials modulo an irreducible polynomial of degree 8. A polynomial is
irreducible if its only divisors are one and itself. For the AES algorithm, this irreducible
polynomial is

mx)=x"+x"+x +x+1, 4.1)
B] [t 000 1 11 1]p] 1
pl 111000 1 1 1f|p| |1
S 1 1]|b,
Shox :a — b=al, thenb - b [l |11 7000l |
b7l 1111 0 0 olls| o
b| o1 1111 0 ollp] |1
] bl oo 1 11 1 1 ofp| |1
Algebralic structure b ool
1oy e e Wy el e eyl el Mo el ety e e 1
¥ v
A x4 = X A [GRyY))
GF2Y g | | ar— | : S0
o # ! 14 - e ["}12)
GF((((2PF¥ry | 8! :
i i i affine
i j‘%—’ A - }; ;fl i transformation
: |4 :

Multiplicative inversion

AES

* Perform operation AddRoundKey, which XORs
the round key with the state.

e For each of the N rounds:

perform operation ByteSub (a substitution using an S-box)
perform operation ShiftRow (a permutation)

perform operation MixColumn (unless it is the last round)
perform AddRoundKey.

Conclusion for AES

Architecture \ Critere Tqj|le En erg ie TE[T]pE.
Table X
Decode — X

Permute —

Encode

Algebre X

Pipeline de processeurs

 Example on 6502 processor (8 bit) :

— download here : https://github.com/chenxiao07/vhdl-nes/tree/master
- readin file vhdl-nes-master/src/free6502.vhd lines 765 to 772

alu_in1i

alu_add. alu_in1l

alu_add _in2
alu_add cin

case alu_op 1s

765 when MC_BIT_AND
then MC_BIT_OR
jhen MC_BIT_XOR
when MC_BIT_ASL

en MC_BIT_LSR
en MC_BIT_ROL
when MC_BIT_ROR

772 when others

alu_add _in2

alu_in2
c_flag

alu_out
alu_out
alu_out
alu_out
alu_out
alu_out
alu_out
alu_out

alu_1in2

alu_add _cin

alu_op

alu_inl
alu_in1i
alu_ini
alu_inl
alu_in1i
alu_ini
alu_inl
alu_in1i

: c;flag

c_flag

alu_in2
alu_in2

alu_in1i
c_flag
alu_1in1l

https://github.com/chenxiao07/vhdl-nes/tree/master

Pipeline de processeurs

Example on LEON processor (32 bit) :

see gaisler/leon3v3/1u3.vhd

procedure logic_opir registers; aluinl., aluinZ., mey word
ymshb logicres. y out word) 1is
le logicout word

r.e.aluop is

n EXE_AND logicout aluinil aluin2

n EXE_ANDN logicout aluini aluin2
n EXE_OR logicout aluinl aluin2

n EXE_ORN logicout aluinil aluin2
n EXE_XOR logicout aluini aluin2

n EXE_XNOR logicout aluinl aluin2
n EXE_DIV

f DIVEN then leogicout aluin2

=1se logicout others

n others logicout

2

5
2
2
2
2
2
2
2

I_I.

T IT

e.ctrl.wy r.e mulstep

ymshb r.m.y downto
r.e.ctrl.wy then y logicout
r.m.ctrl.wy then y mey
MACPIPE the mulo. result
r.x.ctrl.wy -

r.-w.s.y; end
logicres logicout

i
r

—

MM M M M M

= = e e

Assistance a la synthese

* VHDL

- attribute keep of clock_signal_name:
signal 1s "true";

* Verilog

- // synthesis attribute keep of
clock_signal_name 1s true;

« Comme des scripts :

- set_dont_touch [get_cells
I_cdnuser_cts/S_CKsunderM_DLY_1]

A Vous :
https://www.edaplayground.com/x/4eFR

https://digitaljs.tilk.eu/

https://digitaljs.tilk.eu/

U1+Uo
U,+U;

Fibonacci

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over
5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

0,1,1,2,3,58,13 Search Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:0,1,1,2,3,5,8,13

Displaying 1-10 of 64 results found. page 1234567
Sort: relevance | references | number | modified | created Format: long | short | data
A000045 Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.]

(Formerly M0G92 N0O256) 3752

e,1,1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 618, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169 (list; graph; refs; listen; history; text; internal format)

OFFSET 8,4

COMMENTS Also sometimes called Lamé's seqguence.
F(n+2) = number of binary seguences of length n that have no consecutive 8's.
F(n+2) = number of subsets of {1,2,...,n} that contain no consecutive integers.
Fin+1l) = number of tilings of a 2 X n rectangle by 2 X 1 dominoes.
F(n+1l) = number of matchings (i.e., Hosoya index) in a path graph on n vertices:

F(5)=5 because the matchings of the path graph on the vertices A, B, C, D are the
empty set, {AB}, {BC}, {CD} and {AB, CD}. - Emeric Deutsch, Jun 18 2601
F(n) = number of compositions of n+l with no part equal to 1. [Cayley, Grimaldil
Positive terms are the solutions to z = 2¥x*y™4 + (x"2)*y"3 - 2%(x"3)*y"2 - y"5 -
(x"4)*y + 2%y for x,y >= @ (Ribenboim, page 193). When x=F(n}, y=F(n + 1) and z=>8
then z=F(n + 1}.

Simulation

« vlog fibonacci.sv fibonacci_tb.sv
« vsim fibonaccili_tb

¥|Instance I-_-@_
:lj fibonacci_tb 4 ffibonacci_tb/clk H
=3 ‘ I_DUT 4 fjfibonacci_tbfreset_n
IS Al o« rfibonacci tbju (@hol | Jehoy | |@hos |ehos J8ho5 _ (8hoy | 8hod [Ehoc
----- & #ALWAYS: £ [fibonacci_tb/I_DUT/clk |
ﬂ‘ std

£ ffibonacci tb/l_ DUT/reset n

B -“. ffibonacci_tb/l_DUT/U 18'h01 1 8'h0P 1 8'h03 1 8'h04 1 8'h05 18'hO¥ 1 8'h0Y L 8'h0c
B4 (fibonacci_tb/l DUT/U_1 18'ho1l | 8'h0p | 8'h0B | 8'ho4 :|:E's'}‘|l:l'_"r L 8'hOY 1 8'h09
B4 (fibonacci_tb/l_ DUT/U_2 18'...18'h0olL | 8'h0p 1 8'h03 iE’s'}‘ul:l-ﬂ 1 8'h05 1 8'h07

|’ #vsim_capac

vinstance | | I -
=4 fibonacci_tb 4 ffibonacci_tb/clk H

:_rj I_but 4 [fibonacci_tbfreset n
-l &4 fibonacci thu (8. J8ho? _ |ehos |ehos Jehos [ehod |ehis (8h2p |8h3y | &hs0
J:ﬁfﬁiﬁg £ ffibonacci_tb/l_DUT/clk ﬁ
=8 std £ ffibonacci th/l DUT/reset n

|’ #vsim_capac L+ B ,-‘ﬁhonacci_thjl_DUTju (8...)8h02 |8h03 |8h05 |8h08)\8h0od |8h15 18h2P |8Nh37)8'h59
- B4 ffibonacci_th/l DUT/U_1 (8hos _ |shod _ |8his _ |8h2? _ |8h3}

B4 ffibonacci_tb/l_ DUT/U_2 18'... 18'h0l 1 8'h0p | 8'h03 1 8'h05 | 8'h08 1 8'hod 1 8'h1b | 8'h2p

'I—"f"—"— T -

18'h01 | 8'h0P 1 8'h0 5 | 8'h0b

- - i

module fibonacci(clk,

Fibonaccl en
SySte mve rl Iog input logic clk;

input logic reset_n;
output logic [7:0] U;

// Un-1 (= Un au cycle precedent)
logic [7:0] U_1;

/7 Un-2 (= Un-1 au cycle preceédent)
logic [7:0] 2

always @(posedge clk or negedge reset_n)
if(reset_n==0)

begin
U <= 1;
U_1 <= 1;
U_2 <= 0;
end
else
begin

// Un = Un-1 + Un-2
U <= U_1 + U_2;

// Un-1 = Un retarde d'un cycle
U_1 <= \U;
// Un-2 = Un-1 retarde d’un cycle
2 <=1 1

end

endmodule

Exercice d'arithmeétique

Exercice d'arithmeétique

L emmas :

* (Xty)=(X]y)+ (X & Y)
* (x@y) =(X]y)—(X&Y)

Exercice d'arithmeétique

Otherwise, consider

Lemmas | @s>1) + (b>>1) + (a%2 + b%%2)>>1)

* (Xty)=(X]y)+ (X & Y)
* (x@y) =(X]y)—(X&Y)

C-Element : comportemental

TAB. 1. Le C-Element a deux entrées accompagné de
son comportement decrit en VHDL.

q if (nrst =0) then
b C Y y <= 0;
elsif (a=0b) then
nrst y.{: ai
end 1f ;

C-Element : structures en transistors

VDD
i —

_
_

VSS 777

F1G. 1a. C-Element
dynamique.

rmj
1]

V55

:| wk
<]
[T

FIG. 1b. C-Element a
rebouclage faible.

C-Element : structures en transistors

VDD A& VDD T

! L |
AL AL O eHD L
Jot et

e
o E

o N O Al
»

L

1 [
VSS S VSS %

F1G. 1c. C-Element FIG. 1d. C-Element
conventionnel. symeétrique.

C-Element : structures en transistors

FI1G. 2a. Structure en FI1G. 2b. Structure en tran-

portes du C-Element sistors du C-Element a
a bascule RS. bascule RS de la Fig. 2a.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

