

ENS L3 : "Systèmes numériques :
de l'algorithme aux circuits"

Leçon : langages de description de matériel

Sumanta Chaudhuri
19 Decembre 2023

Programme

● Verilog
– Synthetisability

● EDA (Electronic Design Automation)
– Standard Cell Design
– Qflow Example

● FPGA Architecture
– EDA for FPGA
– VPR example

● Exercices : TD en ligne

Niveaux de description

● Transaction-Level Model
● Register-Transfert Level :

– Comportemental
– dataflow

● Netlist (structurel)

Langages

● System-C (IEEE 1666)
– Testbench
– Dimensionnement de performances

● Verilog (IEEE 1076), VHDL (IEEE 1364)
– Simulation + synthèse
– Netlist

SystemC

Syntaxe Verilog

Syntaxe Verilog

Syntaxe Verilog

Syntaxe Verilog

Syntaxic sugar :

Il y a 123 mots réservés
dans verilog !

Syntaxe Verilog

Syntaxe Verilog

Ternaires :

Syntaxe Verilog : combinatoire

Syntaxe Verilog : sequentiel

● ez : compteur modulo 2
● q : compteur modulo 23, avec enable sur ez
● ex : est affecté 2x, mais sous des conditions différentes

Petits exemples de codes en Verilog

Petits exemples de codes en Verilog

Petits exemples de codes en Verilog

Semiconductor Manufacturing

● https://bit.ly/3qJVrfL

https://bit.ly/3qJVrfL

EDA

Test des circuits intégrés

Deux modes, en fonction de TEN

Test des cartes électroniques
Boundary-scan, défini dans le standard IEEE Std.-1149.1

Standard Cells

Vérifications finales

DRC : Design Rules Check
LVS : Layout Versus Schematic

QFLOW Example

● sudo apt-get install qflow

Standard Cells : Interesting bits

● Clock Tree Synthesis
● Cell Dimension (Rent’s rule)

– T=t GP

– T : No of output wires

– T : average number of pins

– G : No. Of gates

– P : Rent’s parameter

● How many tracks can run over each cell ?

Commands

FPGA Architecture

Abstract
While modern FPGAs often contain clusters of 4-input

lookup tables and flip flops, little is known about good
choices for two key architectural parameters: the number of
these basic logic elements (BLEs) in each cluster, and the total
number of distinct inputs that the programmable routing can
provide to each cluster. In this paper we explore the effect of
these parameters on FPGA area-effi ciency. We show that a
cluster containing N BLEs needs only 2N + 2 distinct inputs
(vs. the 4N maximum) to achieve complete logic utilization.
Secondly, we fi nd that a cluster size of 4 is most area-effi -
cient, and leads to an FPGA that is 5 - 10% more area-efficient
than an FPGA based on a single BLE logic block.

1. Introduction
One of the key determinants of an FPGA’s area-efficiency

is the structure and granularity of its logic block. If a very sim-
ple, or fine-grained, logic block is employed, more logic
blocks will be required to implement a given circuit, and the
routing area required to interconnect the blocks may become
excessive. On the other hand, if a very complex, or coarse-
grained, logic block is used, much of the logic block function-
ality may be unused in most circuits, again wasting area.

Most commercial FPGAs use logic blocks based on look-
up tables (LUTs) [1, 2, 3], and accordingly most prior
research has focused on LUT-based logic blocks [4, 5, 6]. In
[4], it is shown that a 4-input LUT is the most area-efficient
LUT, chiefly because LUT complexity grows exponentially
with the number of inputs. In this study, we investigate a logic
block based on a cluster of 4-input LUTs. The complexity of
this logic block cluster grows less than quadratically with
cluster size, so it holds promise as a practical coarse-grained
logic block.

We explore two questions concerning this cluster architec-
ture. First, how many distinct inputs should be provided to a
cluster of N 4-LUTs? Secondly, how many 4 LUTs should be
included in a cluster to create the most area-efficient logic
block? Recent FPGAs from Xilinx [7], Altera [1], Lucent
Technologies [3] and Actel [8] have all grouped several LUTs
together into a more coarse-grained logic block, but there has
been little published work investigating the number of LUTs
which should be included in a cluster.

The next section describes the cluster architecture in
detail. Section 3 outlines the experimental method we used to
evaluate each variant of the architecture. Section 4 describes
the algorithms used in our logic cluster packing program. Sec-
tion 5 presents results concerning the number of inputs that
must be provided to a cluster of N 4-LUTs, while Section 6

evaluates the area-efficiency of clusters of different sizes.
Finally, we summarize our results and conclusions.

2. Cluster-Based Logic Blocks
Fig. 1 shows the structure of a logic cluster. This logic

block has a two-level hierarchy; the overall block is a collec-
tion of basic logic elements (BLEs). As shown in Fig. 1a, our
basic logic element is composed of a 4-LUT and a register,
and the BLE output can be either the registered or unregis-
tered version of the LUT output. The complete logic block
consists of N interconnected BLEs, as shown in Fig. 1b. We
call the total logic block a logic cluster.

We describe a logic cluster via two parameters, N and I. N
is the number of BLEs per cluster, while I is the number of
inputs to the cluster. As Fig. 1 shows, not all 4N LUT inputs
are accessible from outside the logic cluster. Instead, only I
external inputs are provided to the logic cluster -- multiplexers
allow arbitrary connections of these cluster inputs to the BLE
inputs. The same multiplexers also connect to each of the N
BLE outputs, allowing the output of any BLE within the clus-
ter to be connected to any of the BLE inputs. All N outputs of
the logic cluster can be connected to the FPGA routing for use
by other logic clusters.

Notice that the logic cluster of Fig. 1 is fully connected; i.e.
each of the 4N BLE inputs can be connected to any of the I
cluster inputs or any of the N BLE outputs. It is simpler to
write CAD tools that completely exploit logic clusters that are
fully connected than those which are not. For example, deter-
mining if a group of BLEs can be implemented in a single
cluster only requires counting the number of cluster inputs

Inputs 4-input
LUT Clock

D FF Out

(a) Basic logic element (BLE)

BLE

BLE
. .

 .

. .
 .

N

N
BLEs

N
Outputs

Clock

I
Inputs

I

(b) Logic clus ter

Fig. 1. Structure of basic logic element (BLE) and logic cluster.

#1

#N

Cluster-Based Logic Blocks for FPGAs: Area-Eff ciency vs. Input Sharing and Size
Vaughn Betz and Jonathan Rose

Department of Electrical and Computer Engineering, University of Toronto
10 King’s College Road, Toronto, Ontario, CANADA M5S 3G4

{vaughn, jayar}@eecg.utoronto.ca

This research was supported by the Information Technology Centre of
Ontario, the Walter C. Sumner Foundation, and an NSERC 1967 Scholarship.

FPGA Architecture

4 of 12

of inputs to the cluster. As Figure 3 shows, not all of the LUT inputs (of which there are 4 x N) are

accessible from outside the logic cluster. Instead, only I external inputs are provided to the logic

cluster -- multiplexers within the logic block allow arbitrary connections of these cluster inputs to

the BLE inputs. The same multiplexers also connect to each of the BLE outputs, allowing the out-

put of any BLE within the cluster to be connected to any of the BLE inputs. All N outputs of the

logic cluster can also be connected to the main FPGA routing for use by other logic clusters.

Notice that each of the BLE inputs can be connected to any of the cluster inputs or any of the

BLE outputs. We therefore call these logic clusters fully connected. It is simpler to write CAD

tools for fully-connected logic clusters than it is to write tools for clusters with less f exible local

interconnect. For example, determining if a group of BLEs can be implemented in a single cluster

is simple -- if the BLEs need no more distinct inputs than the number of cluster inputs (I), they

can all go in one cluster. As well, in a fully-connected logic cluster all the cluster inputs and all the

cluster outputs are logically-equivalent. That is, all of the inputs are functionally identical, and all

Inputs 4-input
LUT Clock

D FF Out

Figure 2: Basic Logic Element (BLE)

BLE

BLE
. .

 .

. .
 .

N

N
BLEs

N
Outputs

Clock

I
Inputs

I

Logic cluster

Figure 3: Logic cluster structure.

#1

#N

FPGA

FPGA Architecture

Shor t wi r e
segment

LAB

LABLAB

LAB

Long wi r e
segment

Swi t ch
bl ock

Pr ogr ammabl e r out i ng swi t ch

Logi c
bl ock

Connect i on
bl ock

Pr ogr ammabl e
connect i on

box

FPGA Architecture

SB CB SB CB SB CB

LAB LAB LAB

LAB LAB LAB

LAB LAB LAB

SB

SB CB SB CB SB CB SB

SB CB SB CB SB CB SB

SB CB SB CB SB CB SB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

I/O I/O I/O

I/O I/O I/O

I/O
I/O

I/O

I/O
I/O

I/O

Vertical Routing
Channel

Switch Box
(SB)

Connection
Box

Horizontal
Routing Channel

Logic Array
Block (LAB)

I/O Block

Channel
Width

(W)

Routing
Architecture

Example

EDA

VPR Example

● git clone
https://github.com/verilog-to-routing/vtr-verilog-
to-routing.git

EDA Algorithms

AB

CE

F

G
H

D

OUT

D 1,2 → H 1,2 → OUT 1,2

OUT 0,3 0ns

OUT 1,2 > 0ns

δA = 1ns

δC = 2ns

δH = 2ns
10ns
7ns

11ns
9ns

8ns

B 1,2 → F 1,2 → G1,2 → OUT 1,2

δC = 3ns
δD = 0ns

δB = 3ns

δF = 1ns

δAND = 1ns

δAND = 1nsδAND = 1ns

δAND = 1ns

δOUT = 3ns

δG = 1ns
A1,2 → F 1,2 → G1,2 → OUT 1,2

C 1,2 → G1,2 → OUT 1,2

E 1,2 → H 1,2 → OUT 1,2

Converting to Graph

A0

A1

1
<0,1> <0,3>

<0,2,4>

<0,3,5>

<0,3,4,6>

<0,4,5,7>

<0,4,5,6,7,8>

<0,7,8,9,10,11>

<0,1,4>

<0,3><0><0,2>

<0,3,6>

B0

B1

3

C0

C1

2

D0

D1

0

E0

E1

3

F0

1 1

H0

1

G0

1 1

F1

1

G1

2

1

OUT0

1

H1

1

1

OUT1

3

tarr(A1) tarr(B1)

tarr(C1) tarr(D1) tarr(E 1)

tarr(F 0)

tarr(H0) tarr(G0)

tarr(F 1)

tarr(G1)

tarr(OUT0)

tarr(H1)

tarr(OUT1)

EDA Algotithms

● Placement
– MinCut Partition

– Simulated Annealing

● Routing
– Dijkstra’s Algorithm

– Maze router

● Static Timing Analysis

● LVS
– Graph Isomorphism

TD (Travaux Dirigés)

● Exercice :

● Entrainement de type MOOC :
– http://hdl.telecom-paristech.fr/

:

– https://perso.telecom-paristech.fr/guilley/EN
S/20171205/TP/

http://hdl.telecom-paristech.fr/
https://perso.telecom-paristech.fr/guilley/ENS/20171205/TP/
https://perso.telecom-paristech.fr/guilley/ENS/20171205/TP/

Exercice 1 : Incrémenteur

Exercice 2 : FSM

Exercice 3 : Synthétisabilité

Synthétisabilité

Exercice 4 : SWAP

Exercice 5 : BitSlicing (MAX)

Exercice 6 : AES

Sboxes en cryptographie (sym.)

AES : Advanced Encryption Standard

NIST FIPS 197
Included in ISO/IEC 18033-3 standard

SubBytes = Substitute Bytes

Hardware view

Synthèse logique [1/2]

Synthèse logique

Decode – Permute - Encode

Algebraic structure

Sbox : a → b=a-1, then b → b'

AES

● Perform operation AddRoundKey, which XORs
the round key with the state.

● For each of the N rounds:
perform operation ByteSub (a substitution using an S-box)

perform operation ShiftRow (a permutation)

perform operation MixColumn (unless it is the last round)

perform AddRoundKey.

Conclusion for AES

Pipeline de processeurs

● Example on 6502 processor (8 bit) :

– download here : https://github.com/chenxiao07/vhdl-nes/tree/master

– read in file vhdl-nes-master/src/free6502.vhd lines 765 to 772

765

772

https://github.com/chenxiao07/vhdl-nes/tree/master

Pipeline de processeurs
Example on LEON processor (32 bit) :

see gaisler/leon3v3/iu3.vhd

Assistance à la synthèse

● VHDL
– attribute keep of clock_signal_name:
signal is "true";

● Verilog
– // synthesis attribute keep of
clock_signal_name is true;

● Comme des scripts :
– set_dont_touch [get_cells
I_cdnuser_cts/S_CKsunderM_DLY_1]

À Vous :
https://www.edaplayground.com/x/4eFR

https://digitaljs.tilk.eu/

https://digitaljs.tilk.eu/

Fibonacci

● U0 = 0
● U1 = 1
● U2 = U1+U0

● U3 = U2+U1

● ...

Simulation

● vlog fibonacci.sv fibonacci_tb.sv
● vsim fibonacci_tb

Fibonacci en
SystemVerilog

Exercice d'arithmétique

Exercice d'arithmétique

Lemmas :

● (x+y) = (x | y) + (x & y)
● (xÅy) = (x | y) – (x & y)

Exercice d'arithmétique

Lemmas :

● (x+y) = (x | y) + (x & y)
● (xÅy) = (x | y) – (x & y)

Otherwise, consider
(a>>1) + (b>>1) + ((a%2 + b%2)>>1)

C-Element : comportemental

C-Element : structures en transistors

C-Element : structures en transistors

C-Element : structures en transistors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

