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Programme

● Verilog
– Synthetisability

● EDA (Electronic Design Automation)
– Standard Cell Design
– Qflow Example

● FPGA Architecture
– EDA for FPGA
– VPR example

● Exercices : TD en ligne



  

Niveaux de description

● Transaction-Level Model
● Register-Transfert Level :

– Comportemental
– dataflow

● Netlist (structurel)



  

Langages

● System-C (IEEE 1666)
– Testbench
– Dimensionnement de performances

● Verilog (IEEE 1076), VHDL (IEEE 1364)
– Simulation + synthèse
– Netlist



  

SystemC



  

Syntaxe Verilog



  

Syntaxe Verilog



  

Syntaxe Verilog



  

Syntaxe Verilog

Syntaxic sugar :

Il y a 123 mots réservés
dans verilog !



  

Syntaxe Verilog



  

Syntaxe Verilog

Ternaires :



  

Syntaxe Verilog : combinatoire



  

Syntaxe Verilog : sequentiel

● ez : compteur modulo 2
● q : compteur modulo 23, avec enable sur ez
● ex : est affecté 2x, mais sous des conditions différentes



  

Petits exemples de codes en Verilog



  

Petits exemples de codes en Verilog



  

Petits exemples de codes en Verilog



  



  

Semiconductor Manufacturing

● https://bit.ly/3qJVrfL

https://bit.ly/3qJVrfL


  

EDA



  

Test des circuits intégrés

Deux modes, en fonction de TEN



  

Test des cartes électroniques
Boundary-scan, défini dans le standard IEEE Std.-1149.1



  

Standard Cells



  

Vérifications finales

DRC : Design Rules Check
LVS : Layout Versus Schematic



  

QFLOW Example

● sudo apt-get install qflow



  

Standard Cells : Interesting bits

● Clock Tree Synthesis 
● Cell Dimension (Rent’s rule)

– T=t GP

– T : No of output wires

– T : average number of pins 

– G : No. Of gates

– P : Rent’s parameter

● How many tracks can run over  each cell ?



  

Commands



  

FPGA Architecture

Abstract
While modern FPGAs often contain clusters of 4-input

lookup tables and flip flops, little is known about good
choices for two key architectural parameters: the number of
these basic logic elements (BLEs) in each cluster, and the total
number of distinct inputs that the programmable routing can
provide to each cluster. In this paper we explore the effect of
these parameters on FPGA area-effi ciency. We show that a
cluster containing N BLEs needs only 2N + 2 distinct inputs
(vs. the 4N maximum) to achieve complete logic utilization.
Secondly, we fi nd that a cluster size of 4 is most area-effi -
cient, and leads to an FPGA that is 5 - 10% more area-efficient
than an FPGA based on a single BLE logic block.

1. Introduction
One of the key determinants of an FPGA’s area-efficiency

is the structure and granularity of its logic block. If a very sim-
ple, or fine-grained, logic block is employed, more logic
blocks will be required to implement a given circuit, and the
routing area required to interconnect the blocks may become
excessive. On the other hand, if a very complex, or coarse-
grained, logic block is used, much of the logic block function-
ality may be unused in most circuits, again wasting area.

Most commercial FPGAs use logic blocks based on look-
up tables (LUTs) [1, 2, 3], and accordingly most prior
research has focused on LUT-based logic blocks [4, 5, 6]. In
[4], it is shown that a 4-input LUT is the most area-efficient
LUT, chiefly because LUT complexity grows exponentially
with the number of inputs. In this study, we investigate a logic
block based on a cluster of 4-input LUTs. The complexity of
this logic block cluster grows less than quadratically with
cluster size, so it holds promise as a practical coarse-grained
logic block.

We explore two questions concerning this cluster architec-
ture. First, how many distinct inputs should be provided to a
cluster of N 4-LUTs? Secondly, how many 4 LUTs should be
included in a cluster to create the most area-efficient logic
block? Recent FPGAs from Xilinx [7], Altera [1], Lucent
Technologies [3] and Actel [8] have all grouped several LUTs
together into a more coarse-grained logic block, but there has
been little published work investigating the number of LUTs
which should be included in a cluster.

The next section describes the cluster architecture in
detail. Section 3 outlines the experimental method we used to
evaluate each variant of the architecture. Section 4 describes
the algorithms used in our logic cluster packing program. Sec-
tion 5 presents results concerning the number of inputs that
must be provided to a cluster of N 4-LUTs, while Section 6

evaluates the area-efficiency of clusters of different sizes.
Finally, we summarize our results and conclusions.

2. Cluster-Based Logic Blocks
Fig. 1 shows the structure of a logic cluster. This logic

block has a two-level hierarchy; the overall block is a collec-
tion of basic logic elements (BLEs). As shown in Fig. 1a, our
basic logic element is composed of a 4-LUT and a register,
and the BLE output can be either the registered or unregis-
tered version of the LUT output. The complete logic block
consists of N interconnected BLEs, as shown in Fig. 1b. We
call the total logic block a logic cluster.

We describe a logic cluster via two parameters, N and I. N
is the number of BLEs per cluster, while I is the number of
inputs to the cluster. As Fig. 1 shows, not all 4N LUT inputs
are accessible from outside the logic cluster. Instead, only I
external inputs are provided to the logic cluster -- multiplexers
allow arbitrary connections of these cluster inputs to the BLE
inputs. The same multiplexers also connect to each of the N
BLE outputs, allowing the output of any BLE within the clus-
ter to be connected to any of the BLE inputs. All N outputs of
the logic cluster can be connected to the FPGA routing for use
by other logic clusters.

Notice that the logic cluster of Fig. 1 is fully connected; i.e.
each of the 4N BLE inputs can be connected to any of the I
cluster inputs or any of the N BLE outputs. It is simpler to
write CAD tools that completely exploit logic clusters that are
fully connected than those which are not. For example, deter-
mining if a group of BLEs can be implemented in a single
cluster only requires counting the number of cluster inputs
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Fig. 1. Structure of basic logic element (BLE) and logic cluster.
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of inputs to the cluster. As Figure 3 shows, not all of the LUT inputs (of which there are 4 x N) are

accessible from outside the logic cluster. Instead, only I external inputs are provided to the logic

cluster -- multiplexers within the logic block allow arbitrary connections of these cluster inputs to

the BLE inputs. The same multiplexers also connect to each of the BLE outputs, allowing the out-

put of any BLE within the cluster to be connected to any of the BLE inputs. All N outputs of the

logic cluster can also be connected to the main FPGA routing for use by other logic clusters.

Notice that each of the BLE inputs can be connected to any of the cluster inputs or any of the

BLE outputs. We therefore call these logic clusters fully connected. It is simpler to write CAD

tools for fully-connected logic clusters than it is to write tools for clusters with less f exible local

interconnect. For example, determining if a group of BLEs can be implemented in a single cluster

is simple -- if the BLEs need no more distinct inputs than the number of cluster inputs (I), they

can all go in one cluster. As well, in a fully-connected logic cluster all the cluster inputs and all the

cluster outputs are logically-equivalent. That is, all of the inputs are functionally identical, and all

Inputs 4-input
LUT Clock

D FF Out

Figure 2: Basic Logic Element (BLE)

BLE

BLE
. .

 .

. .
 .

N

N
BLEs

N
Outputs

Clock

I
Inputs

I

Logic cluster

Figure 3: Logic cluster structure.

#1

#N

FPGA



  

FPGA Architecture
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FPGA Architecture
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EDA



  

VPR Example

● git clone 
https://github.com/verilog-to-routing/vtr-verilog-
to-routing.git



  

EDA Algorithms

AB

CE

F

G
H

D

OUT

D 1,2 → H 1,2 → OUT 1,2

OUT 0,3 0ns

OUT 1,2 > 0ns

δA = 1ns

δC = 2ns

δH = 2ns
10ns
7ns

11ns
9ns

8ns

B 1,2 → F 1,2 → G1,2 → OUT 1,2

δC = 3ns
δD = 0ns

δB = 3ns

δF = 1ns

δAND = 1ns

δAND = 1nsδAND = 1ns

δAND = 1ns

δOUT = 3ns

δG = 1ns
A1,2 → F 1,2 → G1,2 → OUT 1,2

C 1,2 → G1,2 → OUT 1,2

E 1,2 → H 1,2 → OUT 1,2



  

Converting to Graph
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EDA Algotithms

● Placement
– MinCut Partition

– Simulated Annealing

● Routing
– Dijkstra’s Algorithm

– Maze router

● Static Timing Analysis

● LVS
– Graph Isomorphism



  



  



  

TD (Travaux Dirigés)

● Exercice :

● Entrainement de type MOOC :
– http://hdl.telecom-paristech.fr/

:

– https://perso.telecom-paristech.fr/guilley/EN
S/20171205/TP/

http://hdl.telecom-paristech.fr/
https://perso.telecom-paristech.fr/guilley/ENS/20171205/TP/
https://perso.telecom-paristech.fr/guilley/ENS/20171205/TP/


  

Exercice 1 : Incrémenteur



  

Exercice 2 : FSM



  

Exercice 3 : Synthétisabilité



Synthétisabilité



  

Exercice 4 : SWAP



  

Exercice 5 : BitSlicing (MAX)



  

Exercice 6 : AES



Sboxes en cryptographie (sym.)

AES : Advanced Encryption Standard

NIST FIPS 197
Included in ISO/IEC 18033-3 standard













SubBytes = Substitute Bytes



Hardware view



Synthèse logique    [1/2]



Synthèse logique





Decode – Permute - Encode



Algebraic structure

Sbox : a → b=a-1, then b → b'



AES

● Perform operation AddRoundKey, which XORs 
the round key with the state.

●  For each of the N rounds:
perform operation ByteSub (a substitution using an S-box)

perform operation ShiftRow (a permutation)

perform operation MixColumn (unless it is the last round)

perform AddRoundKey.



Conclusion for AES



Pipeline de processeurs

● Example on 6502 processor (8 bit) :

– download here : https://github.com/chenxiao07/vhdl-nes/tree/master

– read in file vhdl-nes-master/src/free6502.vhd lines 765 to 772

765

772

https://github.com/chenxiao07/vhdl-nes/tree/master


Pipeline de processeurs
Example on LEON processor (32 bit) :

see gaisler/leon3v3/iu3.vhd



Assistance à la synthèse

● VHDL
– attribute keep of clock_signal_name: 
signal is "true";

● Verilog
– // synthesis attribute keep of 
clock_signal_name is true; 

● Comme des scripts :
– set_dont_touch [get_cells 
I_cdnuser_cts/S_CKsunderM_DLY_1 ]



  

À Vous :
https://www.edaplayground.com/x/4eFR

https://digitaljs.tilk.eu/

https://digitaljs.tilk.eu/


  

Fibonacci

● U0 = 0
● U1 = 1
● U2 = U1+U0

● U3 = U2+U1

● ...



  

Simulation

● vlog fibonacci.sv fibonacci_tb.sv
● vsim fibonacci_tb



  

Fibonacci en 
SystemVerilog



  

Exercice d'arithmétique



  

Exercice d'arithmétique

Lemmas :

● (x+y) = (x | y) + (x & y)
● (xÅy) = (x | y) – (x & y)



  

Exercice d'arithmétique

Lemmas :

● (x+y) = (x | y) + (x & y)
● (xÅy) = (x | y) – (x & y)

Otherwise, consider
(a>>1) + (b>>1) + ((a%2 + b%2)>>1)  



  

C-Element : comportemental



  

C-Element : structures en transistors



  

C-Element : structures en transistors



  

C-Element : structures en transistors
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