ENS L3 : "Systemes numériques :
de l'algorithme aux circuits”

Opérateurs speciaux
Sumanta Chaudhuri

28 Nov. 2023

Apple A13 Chip

Samsung Exynos 9820

|:Fm= g

‘——--—..-i -'r-q-ﬂq--y*—.'-

Qualcomm SnapDragon

JTAG
SSBls

E
=
=
w
)
L]
=
a
o

=2
i
z5
==
o

T
o a
o .
25
=
=
S
€5
“in:

Controllers

Clock&
config cils

Resource Power
Manager System

|:| Applications System

BB
Rx/Tx
video
LVDS
HDMI

@
]
@
=
=
E
=]
o
c
=2

2-LnCS
2-Ln CS
4-Ln DS

= 4-Ln CS
= 4-Ln DS

-

PCM
Mi2s
125
SLIMbus

P
-

Multimedia Subsystem

for HOMI

Audio mixers SUpponE
& interfaces PWR cll

WLAN
FM radio
Bluetooth

I'y

I A

1,
3

I

I

I

I

|

[o |
s LPA AHB =1
|

I

I

QDSPEw ! I DM-meI MIDI I
L2 memony

Low power Audiol
Subsystem |

i, " — T, S — . S 2.

—— e e ——

PoP

DM-Lite
MIMEM

System Memory Management Unit { SMMU) & FPB

WC Subsystem

@
g
3
I
o
-]
@
=
o
<

o8 E Y b e

EBI1

EBID
LPDDR2
LPDDR2

-
-

_—
— i~

Applicationg Fabric >
[

[) (o]

 J

1RIR!
)

T] st [t ok

Krait Y Hrait AHB

=g
i Processor
| Subsystem

Quad Krait
I : CPUs with
Periph L2 cache

————————— - —————
o -

| Pipe m?ITIOfY” Inberrupisi

I

)]
Conax 1
AS Periph I

I

|

GNSS I
Subsystem]
I

|

P

=

GNSS

-
-
-

12¢ =]

UM e
SPI
SPI
12c

UM]

UART ||
UART |-a—

SATA
PCle
TSsSC
PDM
TSIF
(x2)
USBFS

|

I

I

| brigge SPSS Fabric ’ o
t ’ Smart Peripheral I
1 Suhsya:om I

Sl ARMT wi !
g o L Coreclrwns GSB[2: 1] I
T 2 memary I
I

------ I 7

s aEElic e TN £ 52
=, = =T

28%mrB |5 (3|5|8 |5z

w |l 5T B ==

Agenda

CPU

- Micro-Controllers
— Multi Cores

GPU
FPGAS

ASICs

— Most popular functions can aspire to become ASIC.
- Example ??

Agenda

e ASIC Domains

- Telecommunications ‘60s -now

- Cryptography '60s - now
- Computer Graphics ‘80s- now
- Neural Networks ‘2012 - now

Agenda

e Speicific Operator examples

- Telecom

« CRC

« CORDIC
« FFT

* FIR

- Graphics
e Bresenham Algorithm
- Al
e Convolutional Neural Networks

e Alternative Logic Styles

— Asynchronous Logic

— Multi-Valued Logic

CRC : Cyclic Redundancy
Checksum

* Detection of errors in transmission

* A cyclic polynomial code.

* Every word is a polynomial in GF(2).

* e.g code word 11000101 is X"+ X°+0-X°+0-X*+0-X°+X’+0- X +1

* Every valid code is a multiple of the generator polynomial. (prime
polynomial)

 All arithmetic is done in GF(2)

CRC

Given a message polynomial M(x) deg. m

And a generator polynomial G(x) deg. m
M(X).x"=G(X)P(x)+r(x) r(x) : remainder polynomial
Transmit M(x).x"- r(X)

- M(X) I1s m significant bits , r(x) Is in least significant
bits

Verify : divide by G(x) and verify that remainder is 0

CRC

3
GSM X+ X+1
Ethernet/W|f| X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1
WCDMA: X24+X23+X6+X5+X+1
Bluetooth X16+X12+X5+ 1
RFID
X+ X°+1

Implementation Efficace ?

Polynomial Division

e |Let's divide
X +X°+0-X°4+0- X*4+0-X+X*+0- X +1

By X+1.

e \What Is the method ?

CRC : Cyclic Redundancy Checksum

(1x3 +0x? +1x+1) - 1011

11010011101100 000 <--- input right padded by 3 bits
1011 <--- divisor
01100011101100 000 <--- result (note the first four bits are the XOR with the divisor
beneath, the rest of the bits are unchanged)
1011 <--- divisor ...
00111011101100 00O
1011
00010111101100 00O
1011
POPOO0PE1101100 OO <--- note that the divisor moves over to align with the next 1 in the
dividend (since quotient for that step was zero)
1011 (in other words, it doesn't necessarily move one bit per
iteration)
0OOOEERR110100 00O
1011
00000000011000 00O
1011
00000000001110 00O
1011
00OOEEOEEEN101 000
101 1

PEOOOPEEOOPEOO 100 <--- remainder (3 bits). Division algorithm stops here as dividend is
equal to zero.

Nota bene : 1-bit CRC = parity bit

CRC : Cyclic Redundancy Checksum

(1x3 + 0x? + 1x+ 1) - polynomic division remainer
> R<X> := PolynomialRing(GF(2));

SR =NA L xel ~ magma code

> IsIrreducible(P);
true

11010011101100 100 <--- input with check value
1011 <--- divisor
01100011101100 100 <--- result
1011 <--- divisor ...
00111011101100 100
00000000001110 100
1011
00000000000101 100
101 1
0 <--- remainder

Nota bene : 1-bit CRC = parity bit

CRC Hardware

CRC est un division polynomial GF(2)
Décalage a Gauche
Quand MSB=1, faite XOR avec le diviseur
LFSR (Linear Feedback Shift Registers)
Galois LFSR for Polynomial division in GF(2)

XML =~X; X=X

—

11010011101100 000
1011
01100011101100 000
1011
0111011101100 000
1011
010111101100 000

CORDIC

 Comment calculer le valeur de cos(x) et sin(x) ?

 Comment calculer le valeur de cos(x) et sin(x)
sans multiplication?

CORDIC .
Coordinate Rotation Digital Computer

* Deprettere, E., Dewilde, P., and Udo, R.,
"Pipelined CORDIC Architecture for Fast VLSI
Filtering and Array Processing," Proc.
ICASSP'84, 1984, pp. 41.A.6.1-41.A.6.4

* In 2D plane (x,y) - (X\.y"

O

X'=Xxcos®— ysing

y'=ycos@+ xsing

x'=cos¢-

y'=cos¢-

i

x - ytan¢]
:y+xtan¢]

|

tan(¢)=12"

CORDIC

Arbitrary angles of rotation are obtainable by performing a
series of successively smaller elementary rotations. If the
decision at each iteration, 1, 1s which direction to rotate

rather than whether or not to rotate, then the cos(d;) term

becomes a constant (because cos(®) = cos(-0;)). The
iterative rotation can now be expressed as:

Xin1 =K£[Ij_y£ -d, .2_,-:
Yin = Kf[yf + X, 'df .2_,-:

where:

K. =cos(tan27)=1/\1+27

d ==l1

I

CORDIC

Lemma 1.

1
V1+a?

cos(arctan x) =

Lemma 1.

Proof.

CORDIC

1

cos(arctan x) =

cos’y +sin‘y =1

1
— 1+ tan’y =
Y cos? y
5 1
—> cos“y = 5
1+ tan®y

V1+ 22

apply formula for y = arctanx. Notice that when x > 0, arctanx > 0, hence

cos(arctan z) > 0.

[]

CORDIC

CORDIC equations are:

_ —i
Xig =X;— Y;-d;-2 | (0,10):
math.sqrt(1+ **(- *1))
(

Vi = ¥; T, -d, 2™
Zi =2, —d, tan” (2_1')

where
d=-1ifz7; <0, +1 otherwise
which provides the following result:

Jnj' =
A
A
A
A
A
A
A
A
A

et e e e

x, =A [,tﬂ COSZy, — Y, SIn zﬂ]
yﬂ = An[yﬂ CDSEU +Iﬂ Sjnzﬂ]

Ly =

Cordic :

_ —i
X1 =X;— Y d;2

yz‘+1:)’i+xi°di'2_i

z,,=z.—d.-tan (27

Structure

X *

—

[register

™ aan

H— >>D
SEniiW

, — 5
i 1
; imid;

T

remsier |

B*}II
d

ROM |

sgniz)

—

Yo

regisier |

e

i i 2K -

"'.Il

Figure 1. lterative CORDIC structure

FET

N—1
X, = E Tpw™,

n=()

where N is the size of the vectors, w = e2™/N are the “roots-of-unity” (twiddle factors), and 0 < m < N.

Nj2—-1 N/2-1
Xm = Z Eﬂwﬂm -+ meIE Z En-I—N,-"Ewﬂm! DI F
n=0 n=0
Nj2—1 Nf2-—1

Xm= Z IhWEnm+wm Z IEn-l—lwzﬂm- DIT

n=0 n=I0

FFT (Codt Multiplication)

—j21

Zx Wy k=0,12...N Wy=e "

DFT a N point, Chaque point (X[k], k= 0,1,2.... N) requiers N multiplications.

Nombre de Multiplications Nécessaire :)
O(N")

ldée d’optimisation : (Cooley-Tukey)

Diviser un DFT a N point en Partie Paire et Impaire.

Chaque partie peut étre répresente comme DFT a N/2 point.

FFT (DIT)

N
> 1

X[k]=Y x(2m). W™+ x(2m+1). Wk

=0

3
[l
o
3

X[k]=S,[k]+W} S,[K] k=0,1,2....N
WI](V+N/2:_W§[
ty Wy =Wy

, . . 2
~50 % d’economie sur les multiplieurs. Wy=Wy

Nombre totale de multiplications=

FFT (DIT)

X[k]=S,[k]+W}, S,[k] k:0,1,2...%—1

X[k+N/2]=S,[k]-WX S,[k] k=0,1,2....N

Appliquons cette technique récursivement.

N N N
N,2,4,8....2

Nombre. De Multiplicaitons : ~ O(Nlog (N))

FFT example on 8 bits

sl SR SN S
¢ 2 ¥ 3 82 & 3
— 3 3 3 3 3 3 3
w3 2 8 & 2 8
= 3 3 3 3 3 3
e I o o« [e T L+ i
ld.WEWIWIW_szw_Ew
.o m e o 8 B\ = 4
= 2 23 3 3 3 3
EdﬁEMHH
— 3 F F F 3z 37 3
—~ 3 3% 3% % 3
e T o D v D e T, s . o . e T
|
—_ o
= N T~ A -~ R R T N = I o
ST I R

FFT example on 8 bits

ol T UL N N S T
n O 2 8 8 & 8
— 2 3 3|3 3 3 3
M oo o (3B = g
— 3 3 3|3 3 3 3
— 3 3 3|3 3 % 3
L e 3 B I3 8 & =
= 3 3|3 3 3 B3
et IR I = N s o A * i
=TT ¥ e N N
_...,..._u.EE__.H.._ﬂM
— 3 2 2|2 3 3 3
o T e . e . e T B o T, o O, . O
[
—_— o—
=2 = ™M M = o W =
T e

FFT example on 8 bits

U IS L TN S S
m e o |8 B (8 8
— 3|3 3|3 3|3 3
~ |3 5[] 88 %
2|13 3|3 3|3 3
— 3|3 5|8 BT 3
~ e |3 2|3 8|8 3
2|3 3|3 3|3 =3

= | M =

= 3|8 BB L5 05
+ w28 8 |3 %
= 3|3 3|3 &5|F %
e e B e e T B e . e B O o . s

[

_wn+N,-"2

FFT example on 8 bits

= w"tNE N=8k=0,1,2---

1 1 1 1 1 1 1 1
1 -1 w? —w? w —w | w —uw’
1 1| -1 1| w? w?|-w? —w?
1 -1 —w? w?| w —u’ w o —w
1 1 1 1 ~1 ~1 ~1 ~1
1 -1 w? —w?| —w w | —w? w’
1 1| -1 1| —-w? —w?| w?® w?
1 -1 —w? w?|-w w| —w w

Final architecture

X0

Xi1)

Xi(2)

X(3)

Xid)

X(3)

FFT example on 8 bits

ILLUSTRATION OF THE BIT-REVERSED INDICES.

Index | bmary | Bit reversed index | binary
0 000 0 000
I 001 2| 100
2 010 2 010
3 011 6 110
4 100 I 001
3 101 3 0]
6 110 3 011
7 111 7 111

FFT example on 8 points

(X) = [A2][A1][Ao][P](x),

(1 10 00 00 0]
1 -1 0 00 00 0
0 01 10 00 0
4 0 01 -10 00 0
o] = 0o 00 01 10 o]Al=
0 00 01 -10 0
0o 00 00 01 1
|0 00 00 01 -1

I 1
o O o B w = =D =

o o o 9o = 9O = O

o o o o o

o = O = O O o o

= o = o o o o o

0

0

0

0

1

0 w
-1

0 —w

=

[TR = o o o
1

[A2] =

I 1
o= o= o = o O o= =

o o = o O 9O = O

o = o o o = o o

- O O = O o O

1 0 0
0 w 0
0 0 w?
0 0 0
-1 0 0
0 —w 0
0 0 —w?
0 0 0

—w

See also: https://svn.comelec.enst.fr/trusted _computing/courses/SG_ENS/20161122/pdf/fft.sage

LW o = =
J

w o = o

https://svn.comelec.enst.fr/trusted_computing/courses/SG_ENS/20161122/pdf/fft.sage

DCT : Discrete Cosine Transform

N-1
T 1
szém“cus[ﬁ(ﬂJrE)k] k=0,...,N—1.

Used in JPEG image coding.

FIR Filter

Discrete Convolution.
where:

X[n] is the input signal,
y[n] is the output signal,
N Is the filter order,

b_{i} is the value of the impulse response at the i'th instant for
{\textstyle O\leq Nleq NH\textstyle O\leq i\leq N} of an {\textstyle
NM\text{th}}H\textstyle NM\text{th}}}-order FIR filter. If the filter
IS a direct form FIR filter then {\textstyle b_{i}}{\textstyle b _{i}} is
also a coefficient of the filter.

Finite Impulse Response Filter

154
oUtPUL 1) = z a, -x(n—15+1)
i=l]

outpui(15) = z a, - x(f)
=a, - x(0)+a -x(1)+---+a,. -x(15)

Finite Impulse Response Filter

2(15) (14 2(13) =(00)

iUt

oufput

A15 214 #13 Ety

,[@_,c-utp ut

(k) 16 Tap Averaging Filter

Bresenham’s Algorithm

y=mx+b

Can be re—-written as

f(x,y)=Ax+By+C=0

Where
A=Y Y,

> Half -plane

B=—(X,—X,)

C=(X,—X,)b | Y f(X,y)=x-2y+2

Bresenham’s Algorithm

D:f <X0+1,_)/0+%)_f (XO’YO)

D=[A(x,+1)+B(yy+5)+Cl—[Axy+ By, +C]

D={ Axy+ Byy+C+ A+ B]~[Axy+ By +C]

1 1
—A+—p= —_—
D=A 2B Ay 2Ax

1 1
AD:f(Xo"'Z,J’O"'E)_f(Xo"'1,YO+§):A:A}’

AD:f(x0+2,y0+%)—f(x0+1,y0+%):A+B:Ay—Ax

f(x)=y=.5%x+1

< =

Y

Lﬂl

yv £(X,y)=x-2y+2

Bresenham’s Algorithm

plotLine (x0, yO0, x1, vyl1) f{}{} :Y:.5§{+l

dx = x1 - x0

dy = y1 — yO
D = 2*dy — dx

y = yo0

for x from x0 to x1

plot (x, V)
if D >0

y =y + 1

D =D - 2*dx
end 1f

yv £(X,y)=x-2y+2

Al: CNNs

C, Sy
feature maps feature maps Iacyﬁer Fe
C1 52 16 @ 10 x 10 16@5x56 120 Ia;,r:r Output
feature maps feature maps 10
Input i I \\\
| B = -
Full Gaussian
Convolutions Full . :

Subsampling Convolutions Subsampling connection connection connection
1|0]l130|1}]|0 11011 I | B R 31
gl liflE] Ll1 0|1 1] % ElESuE -
1|]0|J1j0]1]|0 1]0]1 |l 8]|%
1|0]1]1]1]0D Image patch Kernel
ol1l1lol 11 (Local receptive field) (filter) Output
|92 |B]Ll]lb

Al:

AT: IM2COL + MatMult

Input Filters

-
L

Qutpuut Feature
Maps L& o
P v

T] iy
Cony Sty
fr
H O,

H
T
ImZeod W
w 1
Imput Filters
Iml‘-‘n::nll Matrix
Input Feature 1 o
utpuut Feature
» Map Matrix - Maps Matrix
E "
Fi1 F12 F21 Fz2
: <= =
T X = T
%]
w K12 w
B
CufyxT
h K21 Cout
K22 S+

-~
L

ATl: Google TPU

i gg -

TPU: Systolic Array

I
| l . —» Data
l L
+ |
» |
: J' ' F'J'tial Sums
IJ_

TEE 2

]] T]

PE

Systolic Arrays

PE

Why Systolic Architectures? Computer 15(1): 37-46

Kung

(1982)

PE

H.

T.

Systolic

MatMul

\ b2,2
b 2,1b—1,2
2,0 — bl,1—— b0,2
Alignrr;ents intime &1)8 0.1 Coumsof B
Rowsof A l i i
a2 a0l a00 — > >
‘ ‘ \ 4 \ 4 A\ 4
a L2a 11a 10 —> > »
‘ ‘ A\ 4 \ 4 A\ 4
a2 a2l a0 —> > >

T =0

Systolic MatMul

Alignmentsintime

a 1,2a 1L1a 10O

a22 a2l a20
T=1

A 2,2
b 2,1b——1,2
—— b2,0 — bl,1—— b0,2
— bl,0 —— b0,1

y00 | |

a0,0%b0,0
—

I : I

—>

Systolic MatMul

b2,2
b 21b— 1,2
Alignmentsintime b2,0 — bl,1 —— b0,2
<
\ o w1 |
202 DL|+aveola0g P
I R
al2 all aq oo, N
- C T 1
22 21 a20 —» , .

Systolic MatMul

Alignmentsintime

b2,2
< b 2,1b—1,2
‘ ibz,o ib1,1 ibo,z
02| s 0]l s (20,9 =oow2
ibl,O ibo 1 i
al, 1 |t [al0 atowoa
al,2 al, 1) R
‘ +b0.0 ’ '
22 a1 &G, R

Alignmentsintime

4

Systolic MatMul

<

L

b2,2
! 21 b2
a0,0¢b0,0 a0,0b0,1
— +ooru0 0.4 saoruny DL NES
i b2,0 ibl,l ibo,z
al,2 i;ﬁ%’& al,ll ayo01|g] O 2L 0k0,2

+al2a20 [P

i bl,0

a2 obo,0
iy 2

Alignmentsintime

5

Systolic MatMul

<

a2,2 |

! ! |b22
a0,0b0,0 a0,0h0,1
+a0,1*b1,0 +a0,1+b1,1 |90,2 igb"’;'fgfz
+302020 [¥| +a02t21 | > iy
l i b2,1 i bl,2
al, oho,0
al,2 aLobol|g]]| @l 0ko,2
I:g::;"g —»| +al,1*bl,l —p] +all*bl2
+al,2*b2,1
in,O ibl,l i 0,2
Oh0, 0 a2,0bo,1 a2,0b0,2
S Zornn| 22l +a2rb11 320
+a2,2*b2,0

Alignmentsintime

6

Systolic MatMul

<

!

!

!

a0,0+b0,0 a0, 0ohbo, 1 20,6k, 2
+a0,1*b1,0 +a0,1*bl,1 ¢
—> —» +a0,1*bl,2
+a0,2*b2,0 +a0,2*b2,1 +202%b2.2
I | L2
al, obo,0
al obo,1 a1’2 al, oo, 2
I:g::;"g —»| +al,*bll |—p| +alI*blL2
+al,2*b2,1 +al,2*b2,2
! W21 bb12
a2, oho,0 a2,0bo,1 a2,0b0,2
+a2,1*b1,0 82,2' +a2,1*bl,1 az,1 +a2,1*bl,2
+a2,2b2,0 +a2,2"b2,1

Systolic MatMul

Alignmentsintime
<

a0,0¢b0,0 a0, Gbo, 1
RN Y RN
+a0,2*b2,0 +a0,2%b2,1 +202%b2.2
al o6ho,0 ok, 2
T*b10 al 6bo, 1 al, y
I:izkai'o +al}*bll |—p| +all*bl,2
+al,2b2,1 +al,2¥b2,2
Done
I : bb22
a2 o6ho,0 a2 0ho,1 a2 2 a2,0¢b0,2
+a2,1*b10 +a2,1*bl,1 'I +a2,1*bl,2
+a2,2*b2,0 +a2,2xb2,1 +a2,2¢b2,2

!

!

!

Logique asynchrone

* lllustration de logique sequentielle sans horloge
* Mise en place d'une signalisation

y

requete signaux de

acquitement controOle factorises

données

YYvyvyvyyvyy

Logique asynchrone

* lllustration de logique sequentielle sans horloge
* Mise en place d'une signalisation

req / /\\ -
\ — \\7\ /

ack 7

data X X X

Logique asynchrone

* lllustration de logique sequentielle sans horloge
* Mise en place d'une signalisation

lvan Sutherland,
Turing award 1988

Communications of
the ACM, June

Sender's ~y Receiver's

Action « pofiction 1989, Volume 32,
Number 6.

FIGURE 4. The Two-phase Bundied Data Convention

Rendez-vous
IF inputs match in state
THEN copy it for cutput
ELSE hold previous state;
IF inputs match in state
THEN invert it for output
ELSE hold previous state,

IF inputs differ in state

THEN copy upper for output

ELSE hold previous state;
FIGURE 8. Muller C-Elements with Inverters

Muller C-elements contain storage to hold a previous state
on some input conditions. When inverters are included in
input or output wires, as indicated by the bubbles in this
figure, the actions are as listed. Muller C-elements provide
the AND function for events.

C-Element : comportemental

TAB. 1. Le C-Element a deux entrées accompagné de
son comportement decrit en VHDL.

q if (nrst =0) then
b C Y y <= 0;
elsif (a=0b) then
nrst y.{: ai
end 1f ;

C-Element : structures en transistors

VDD
i —

_
_

VSS 777

F1G. 1a. C-Element
dynamique.

rmj
1]

V55

:| wk
<]
[T

FIG. 1b. C-Element a
rebouclage faible.

C-Element : structures en transistors

VDD A& VDD T

! L |
AL AL O eHD L
Jot et

e
o E

o N O Al
»

L

1 [
VSS S VSS %

F1G. 1c. C-Element FIG. 1d. C-Element
conventionnel. symeétrique.

C-Element : structures en transistors

FI1G. 2a. Structure en FI1G. 2b. Structure en tran-

portes du C-Element sistors du C-Element a
a bascule RS. bascule RS de la Fig. 2a.

Micro-pipeline

A(in) A1) EHI.'EJ A(3) Eﬁi?}l}}

e s may P e e e -y e ==

©) ©)

- - ..-.--.--'.

[e e T]
‘-'-'—.-"" LE _E L LR L E R 3 _J

A SRS T TR Alout)
e D|F ECTION OF DATA FLOW =y

FIGURE 10. Control Circuit for a Micropipeline

With data paths omitted, the control circuit for a micropipe-
line is a string of Muller C-elements. In this figure one of four
identical stages is shaded and alternate stages have been
drawn upside down. At the input and output to each stage
there are request, R(n), and acknowledge, A(n), signals. In-
verters in the acknowledge paths are represented by "bub-
bles" at one input of each Muller C-element. The delays
shown explicitly here may not be required for simple data
paths. Notice that each loop in this circuit contains exactly
one inversion, the bubble, and is therefore an oscillator. The
Muller C-elements retard the oscillation in each loop to coor-
dinate it with the actions of adjacent loops. In this and other
figures, dotted wires carry event signals.

Fig. 1a : Modéle

Data flow

if <cond> then <bodyl> else <body2>

(Fig. 1a) et

while <cond> do <body>

variable d'entrée
|

cond

/1 0X
VRV

bodyl | |body2

I

variable de sortie

d’architecture ma-
térielle asynchrone pour le
branchement 1if <cond> then
<bodyl> else <body2>.

(Fig. 1b).

variable d'entrée

initialisation

1 0 0 | K=
body —
1 0 §

variable de sortie
Fig. 1b : Modéle d’architecture ma-
térielle asynchrone pour le

branchement while <cond> do
<body>.

cond

Latch avec poignée de main

ETL
| w}
R C —= R,
i ——)| L[> A A;
Fig. 2a : Symbole du Fig. 2b : Handshake pour le LATCH (partie « coniréle »). Le
LATCH (partie signal en sert a coniroler le latch.

« données »).

Element utile pour MUX / DEMUX

|
otk

jj}) Ri;

0

Fig. 3 : Circuit de transformation de {k, R} en {Ri, Rx;}.

MUX

S hs
RR

DA]
| S 00

R; =
: — A
J A

Fig. 4a : Symbole du Fig. 4b : Handshake pour le MUX22 (partie « contréle »). Le
Mux 22 (partie signal en sert a coniroler le latch de sortie.
« données »).

Time

100

Wl

i0:1] [@ ¥ Q= Z 6 i
i[0] L | |

i1] s # — |

idata[7:0] [xx i 7] | 6l | il ﬁ
j0:1] [0 I 0 2 A
j (0] | '
3[1] I | [
jdata[7:0] [xx [FEiE il
k[0:1] [0 () i I3 I € i
k[0] | L
k(1] | __| _
kdata[7:0] [xx [0)1 \i0 T)0 0
100:1] [0 B i 7 O iy
1{0] L
1(1] | | | '
ldata([7:0] {00 JAB 3 |3 fIE Y56 L
en I [] 7] L] B

10.0
20.0
60.0
90.0
10.0
130.0

I
OxAB
0x34
0x56
0xD4
Ox4E
Ox5E

130.0
10.0
90.0
60.0
20.0
10.0

J
Ox5E
Ox4E
0OxD4
0Ox56
0x34
OxAB

40.0
21.0
53.0
84.0
22.0
130.0

https://www.edaplayground.com/x/3fCs

0x00
0x01
0x00
0Ox01
0x00
0Ox01

DEMUX

RJH'_—F ,
j — C —FL;
Ri—~—e
|_C T =d—..r"1j
C = R;
k Ry ‘ L;
l 0 i i i
1 :>J = AI::- AI
Fig. 5a : Symbole du Fig. 5b : Handshake pour le DEMUX22 (partie « contréle »).
DEMUX22 Les signauz en; et en; (facultatifs) servent d contro-
(partie <« don- ler les deux latch de sortie.

nées »).

Latch avec jeton Initial

i =0 | =
startgqt A = A,

Fig. 6a : Symbole du Fig. 6b : Handshake pour le LATCH_INIT_O (parties « don-
LATCH_INIT_(nées » et « contréle »). Le signal start est actif sur
qui émet transition moniante.
inttialement

un 0 (partie
« données »).

Algorithme GCD

initialisation

a

¢

£

> GCD (a, b)

p=s;

S NS {L 7

Input : a,b>0
while (a#b) do
if (a<b) then

N7y

/l—- 4:::\::77/1—- c::*lq:

+
NN

b—b—a
else
a+—a—>b

Output : GCD (a, b)

/o NS N

L

- :::At)_\l—-?;/@

> GCD (a, b)

Validation par simulation

Marme

0 ps

40.0 ns

B0.0 ns

120.0 ns

160.0 ns

200.0 ns

240.0 ns

280.0 ns

320.0ns

nrst

(=]

reg_a

ack_a

a]

reg_b

ack_h

ged_a

req_god_a

ack_gcd_a

ged_b

req_god_h

ack_gcd_b

o_a_irt0

o_h_intd

o_a_irt]

o_k_irt]

o_a_int?u

o_h_int2u

[ny)

o_a_intdd

o_kb_intdd

| ||eo| | |52

o_a_int2f

o_b_inmt2f

o_a_int3

HEEEEEEEE B

o_k_int3

o_sel_n

A A e A A A A I A P A A L

o_sel_s

ACCELERATOR DESIGN WITH OPENCL

(ATHENS WEEK 19-24 MARCH, 2018)

WHAT DO WE KNOW SO FAR ?

e There are three types of parallelism
= Task Parallelism

m Data Parallelism

= Pipeline

e We saw the reasons for memory stalls and latency.

ne techniques to hide latency through Caching.

ne Virtual Memory.

WHAT DO WE KNOW SO FAR ?

e We saw the evolution of processors from

= Uniprocessor to ...
= Multicores with Simultaneous Multi-Threading.

e And we said hello to the world from our GPU (Mali-
T628).

GPU ARCHITECTURE : UNIPROCESSOR

Instruction

ALU

FPU

Registers
(Cont ext)

|
|
|
|
|
|
|
|
|
|
|
|
:
|
: Execut e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[GitPitch @ github/amusant/tpt39/tmpdev |

4/28

GPU ARCHITECTURE : EVOLUTION

e GPUs took a completely different path of evolution.

e Because they live in a embarrasingly data-parallel
environment.

e The memory stalls/latency problems are still there.

e So are the solutions to hide them.

GPU ARCHITECTURE

Instruction
Execut e

FPU
Registers
(Context)

Instruction
Execut e
FPU

Registers

(Cont ext)

Instruction
Execute

FPU
Registers
(Cont ext)

Instruction
Execut e

6/28

[GitPitch @ github/amusant/tpt39/tmpdev |

GPU Architecture : Evolution

e MIMD, but wait, we don't need the mutliple-
Instruction streams.
o |et' getrid of them.

GPU ARCHITECTURE : SIMD

Instruction

Instruction

Instruction

Instruction

Execut e Execut e Execute Execute

FPU FPU FPU FPU
Registers Registers Registers Registers
(Cont ext) (Cont ext) (Cont ext) (Cont ext)

e e e e e e e e e e e e e

[GitPitch @ github/amusant/tpt39/tmpdev |

GPU ARCHITECTURE : MORE SIMD

Instruction
Execut e

Instruction
Execut e

Instruction
Execut e

Instruction
Execut e

FPU

FPU

FPU

FPU

Instruction

Instruction

Instruction

Instruction

Execute Execute Execut e Execut e

FPU FPU FPU FPU
Registers Registers Registers Registers
(Cont ext) (Cont ext) (Cont ext) (Cont ext)
Registers Registers Registers Registers
(Cont ext) (Cont ext) (Cont ext) (Cont ext)

[GitPitch @ github/amusant/tpt39/tmpdev |

9/28

GPU ARCHITECTURE : MORE SIMD

e |et's not forget our old friend Multi-Threading.
e Which helped us manage latency.

GPU ARCHITECTURE : SIMD WITH MULTI-THREADING.

Instruction
Execut e

Instruction
Execut e

Instruction
Execut e

Instruction
Execut e

FPU

FPU

FPU

FPU

Instruction

Instruction

Instruction

Instruction

Execut e Execut e Execut e Execut e
FPU FPU FPU FPU
t0 tl
Registers Registers Registers Registers Registers Registers Registers Registers
(Cont ext) (Context) (Context) (Cont ext) (Context) (Cont ext) (Cont ext) (Cont ext)
Registers Registers Registers Registers Registers Registers Registers Registers
(Cont ext) (Context) (Context) (Context) (Context) (Context) (Context) (Cont ext)
Registers Registers Registers Registers Registers Registers Registers Registers
(Context) (Cont ext) (Context) (Cont ext) (Cont ext) (Context) (Context) (Context)
Registers Registers Registers Registers Registers Registers Registers Registers
(Cont ext) (Cont ext) (Cont ext) (Cont ext) (Cont ext) (Cont ext) (Cont ext) (Cont ext)
2 t3

[GitPitch @ github/amusant/tpt39/tmpdev |

11/28

QUIZ

e What is the peak performance of this core in Gflops ?

[GitPitch @ github/amusant/tpt39/tmpdev |

12/28

REFINEMENTS

GPU ARCHITECTURE

13/28

[GitPitch @ github/amusant/tpt39/tmpdev |

REFINEMENTS

GPU ARCHITECTURE

14/28

[GitPitch @ github/amusant/tpt39/tmpdev |

GPU ARCHITECTURE : REFINEMENTS

e Adding Scratchpad memory, so that threads can
communicate locally.

/tmpdev]

GPU: MULTIPLE SHADER CORES

EEEE } EOED EET EEEE EEEE

| | — i
EEEE EEEIE : EEEE EEEE
E- EOED } EOET EOE i EE EOET EIEIEIE

[GitPitch @ github/amusant/tpt39/tmpdev |

16 /28

OUR GPU : MALI T628

e ARM MidGard family.
e Can be configures for 4-16 cores.
e configurable SIMD
m 2x FP64,4x FP32,8x FP16, 2x inté64, 4x int32, 8x
Int16, 16x int8
e Two L1 Caches/ Shader core 16KB
e |2 Cache can be configured for upto 64KB.
e Each core Rated at 17 Flops/cycle. (FP32)
o 64 byte Cache lines

[GitPitch @ github/amusant/tpt39/tmpdev]

SOURCE: MALI T628

® https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-3---the-midgard-shader-core

® https://community.arm.com/graphics/f/discussions/6557/mali-t628-gpu-activity-in-streamline

[GitPitch @ github/amusant/tpt39/tmpdev |

18/28

https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-3---the-midgard-shader-core
https://community.arm.com/graphics/f/discussions/6557/mali-t628-gpu-activity-in-streamline

EXAMPLE HETEROGENEQUS SOCS

GIC-400
@0y (s [
Graphics : [DMA] [LCD]
device
uad ACE Lite | |
CQOrte < Quad Configurable: AXIW/AXI3/AHB
Cortex-A7 _
Al15 Orexs ADB-400] [ADB 400] INMC=2D
ACE E AX14 /
|
ADB-400] [ADB-400] [MMU 400 [MMU-400 [MMU-400 }
128b 128b l 12I8b
128b 128b
L | 1 , 1 , |
ACE ACE ACE-Lite + DVM ACE-Lite + DVM ACE-Lite + DVM
CoreLink™ CCI-400 Cache Coherent Interconnect
128 bit @ up to 0.5 Cortex-A15 frequency
ACE-Lite ACE-Lite ACE-Lite
128b 128b 1!8b
|
ACE-Lite ACE-Lite AXH4
DMC-400 NIC-400
Configurable: AXI4/AXI3/AHB/APB
K PHY PHY j
DDR3/2 DDR3/2 Other Other
LPDDR?2/3 LPDDR2/3 Slaves Slaves

[GitPitch @ github/amusant/tpt39/tmpdev |

19/28

EXPRESSING PARALLEISM

NDRangeKernel

global work_size() defines that total no. of elements.
if each element is independent it is also the number
of work _itemes.

each work item can be associated with one thread.

EXPRESSING PARALLEISM

e the global work can be separated into groups.

e get group_id() gives the id of the group.

e get local id() gives the id of the local work item
within the group.

WORK ITEM RELATED FUNCTIONS:

e get work_dim()

o get global sizel)

o get global id()

e get local sizel)

e get local id()

e get num_groups()
e get group_id()

o get global offset()

SYNCHRONIZATION FUNCTIONS: MEM FENCE

e mem_fence: all memory accesses preceding
mem_fence must end before starting memory
accesses following mem_fence.

e read_mem_fence : only for loads.

e write_mem_fence: only for stores.
= arguments: CLK_ LOCAL_MEM_FENCE: only

load/stores to local memory.
= arguments: CLK_GLOBAL_MEM FENCE: only
load/stores to global memory.

[GitPitch @ github/amusant/tpt39/tmpdev]

SYNCHRONIZATION FUNCTIONS: BARRIER

o All work-items in a work-group must execute this
function before the work group can proceed.

e Barrier also issues a mem_fence either to
CLK_LOCAL_MEM _FENCE or
CLK_GLOBAL_MEM_FENCE.

e Thereis noway to synchronize work items in
different work groups.

LAB WORK 1

e \Vector addition with size N

e Calculate speedup with varying N.

e Measure Flops/s.

e Calculate the average of a vector.

e Calculate the average of a vector using workgroups.
e Measure speedup.

LAB WORK 2

o Write a Matrix multiplication routing with two
matrices of size M x K, Kx N.

e where M=K=N

e measure speed up

e use streamline to see various statistics about

Cache/TLB miss.
e Measure Flops/S.

e in a405-xx.enst.fr (desktop) clone the git depot.

DEBUGGER: MGD

e source init.sh > /dev/null
module load m

mge

in odroid

ali/4.4

source init_odroid.sh

mgddaemon
make debug

PERFORMANCE MONITOR: STREAMLINE

e run start_gator.shin tpt39/
m cd tpt39;./start_gator.sh&
e in a405-XX.enst.fr
= $ source init.sh

= $ module load mali/4.4
m $streamline

TELECOM
ParisTech

m A

ISttt o Beyond Bits: A Quaternary
FPGA Architecture using
Multi- V; Multi-V,, FDSOI
Devices

B rian

Motivation

TELECOM

ParisTech

2/48 COMELEG Sumanta Chaudhuri 16/05/2018 =
I umarta Chaudhuri wHAT

I Bits, Trits or Quits ?

® What is the optimum radix for representing numbers ?
® Radix 10:
e Alphabet (0..9), Width of Word logio(N)
B Radix 1:
e Alphabet (0), Width of Word N
® Radix 10000:
o Alphabet (0..9999), Width of Word ‘291o(")
B Radix r:
e Alphabet (0..r-1), Width of Word w = log,(N)

I Bits, Trits or Quits ?

60 T T

radix x width

radix

Figure: Most Economical radix is e (2.718), Binary and Quaternary
are equivalent.

I Ccompute or Communicate?

B Algorithms/Methods are either computation bound or
communication bound.
B Communication bound methods
e In case of processor: performance is determined by
memory bandwidth
¢ In case of circuits: performance is determined by
interconnect.
® Multi-Valued Logic is efficient for communication. less
wires.

B |t is also near optimum for number representation.

I Cost of Interconnect

o

Resistivity [uQ cm]

Scaling
1 bulk resistivity
i ° ! 0
100 1000
Linewidth (nm)

Figure: Interconnect resistance Figure INTCI Cu Resistivity

doesn’t scale with technology.
Figure: surface scattering at lower

dimensions. Taken from ITRS
2007

I nterconnect Scaling

® Chips size gets bigger with every technology node.

® More Repeaters need to be inserted to compensate for RC
delay.

B Rise in interconnect power consumption.

I hterconnect: Possible Solutions

® Time Multiplexing ??7?

® Monolithic 3D ?

m QOptical Interconnect ?

® Carbon Nanotube ?

® Multi-Valued Signalling ??

B rian

Multiple Valued Logic

TELECOM

ParisTech

9/48 COMELEG Sumanta Chaudhuri 16/05/2018 =
ous | umarta Chaudhuri wHAT

I Multiple Valued Signalling

VDD1=0.9V VDD2=0.9V VDD3=0.9V
VDD2=0.6V
VDD1=0.45V
VDD1=0.3V
VDD0=0V VDDO0=0V VDD0=0V
BINARY TERNARY QUATERNARY

Figure: Multiple Valued Signalling

B Reduction of Routing Congestion.
B Saving Energy/Bit.

® More efficient arithmetic Implementation. (Optimum:
ternary logic)

N Multiple Valued Signalling: Energy Savings

Table: Energy for different transitions in a 4-valued signal,
INO(=0 x vad),IN1(= § x VDD), IN2(=2 x VDD), IN3(=VDD).

4-Valued transitions

Transitions Energy
too, 11,233 0
2
fo1: t2s b3, ta2, fo1s to | € X & X vad
fo2, 113, bog, 131 C x g x vdd?®
tos» t30 C x vdd?
Av. Energy/Tran 0.27 x Cvdd®
3-Valued transitions
— 2-Valued transitions
Transitions Energy —
transitions Energy
fo0, 11,2 0
1 2 fo0.t11 0
fo1, ta, t21,to | C X g X vdd 2
> fo1, to C x vdd'
fo2, o C x xvdd’ >
> Av. Energy/Tran 0.5 x Cvdd’
Av. Energy/Tran 0.33 x Cvdd’

I Multi-Valued Logic: Why ?

Why ?
B Energy saving in the interconnect.

B Reduced routing congestion. 50% for quaternary, 33% for
ternary.

B Area saving in the steering logic.

Why Not ?
B |Increased Complexity of transmitter and receiver.
B Reduced noise margin.

I Multi-Valued Logic: Why Now ?

® FDSOI permits the fine-tuning of V;.

Gate Stack

\
T Vias > Vaa
Vaas < Vaa
' "

(a) FDSOI Transistor (b) Back-biasing

Figure: Brief Overview of FDSOI Technology.

B rian

FDSOI: Key Features

TELECOM

ParisTech

14/48 COMELEG Sumanta Chaudhuri 16/05/2018 =
s | umarta Chaudhuri wHAT

I FDSOI: Advantages

Field Depleted Silicon On Insulator.
From 28nm we have only FDSOI or FINFET.
Improved junction capacitance.

Lower process variation, absence of RDF (Random
Dopant Fluctuation)

FDSOI permits the fine-tuning of V4, electrically

e Applying back-biasing to back plane.
RVT | RBB upto -3V | FBB upto +300mv

LVT | FBB upto +3V | RBB upto -300mv
e By increasing gate length. (Poly-Biasing)

I Basic Blocks: DLCs

vDD3 vDD3 VDD3
P3(RVT) P3(LVT) P3(RVT)
FBB NO BB RBB
N3(LVT) N3(LVT) N3(LVT)
VDDO VDDO VDDO
VDD3 VDD3 vDD3
VDD2 VDD2 ; VDD2 =
VDD1 VDL Vin VDD1
VDDO VDDO VDDO

DLCO

DLC1

Table: Down-Literal Converters

Down-Literal Converters
DLCO DLCH DLC2
0 3 3 3

input

1 0 3 3
2 0 0 3
3 0 0 0

DLC2

I Di.Cs: Comparison with Earlier work

VvDD3
P3(RVT)

FBB
N3(LVT)

VDDO
VDD3

DLCO: State of The Art DLCO: FDSOI

B A basic block similar to inverter, required for multiplexers,
and other circuits.

® Earlier implementation propose different dopings of the
PMOS and NMOS.

® With FDSOI the V; can be varied electrically.

B rian

Architecture

TELECOM

ParisTech

18/48 COMELEG Sumanta Chaudhuri 16/05/2018 =
eus | umarta Chaudhuri wHAT

I FPGAs Have A Interconnect Problem.

Vertical Routing
Channel

)

Switch Box
(s8)
Routing
Architecture
Example

— 3]

s T —
— o[—

o — o

Logic Array
Block (LAB)

Horizontal
Routing Channel

Connection

Box

I FPGAs: The Interconnect Overhead

Area Breakdown

100%

=Logic
= Intra-Logic Block Routing
= Inter-Logic Block Routing (Buffers)

= Inter-Logic Block Routing

17%

= Configuration (Logic)

= Configuration (Routing)

Figure: Power consumption
o Area-optimized Timing-optimized ~ Balanced @ The Edward S. Rogers Sr. Department in FPGAS. Taken from [3]

of Electrical & Computer Engincerin
& UNIVERSITY OF TORONTO

Figure: Area Overhead (A study
published in FPL 2016 [4]).

Architetcure

B rrGA

I FPGA: Logic Architetcure

—
Inputs |
—>

—

4-input
LUT

Clock —»>|

DFF

4_D-> Out

I

(a) Basic logic element (BLE)

|
-

:

BLE
#1

i

° BLEs

N
Outputs

BLE

Inputs
Clock

TTT

#N

|

(b) Logic cluster

Fig. 1. Structure of basic logic element (BLE) and logic cluster.

Architetcure

B rrGA

I FPGA: Routing Architetcure

Progranmabl e routi ng sw tch

Logi ¢ o L Short wre
block > 1aB LAB segnent
" A

- 7 e
Connection —, \ &,/:\ Long wre
T 7
block\“/(S — segnent
Progranmable/
connection LAB LAB 4
box Sw tch
/ bl ock

B rian

Primitives for Multi-Valued Logic

TELECOM

ParisTech

25/48 COMELEG Sumanta Chaudhuri 16/05/2018 =
I umarta Chaudhuri wHAT

I FPGA: Primitives

B [ookup Tables
B Flip-Flops
® Switch Boxes

B o multiplexers
o Buffers/ Repeaters

B Connection Boxes (basically Multiplexers)

B o multiplexers
o Buffers/ Repeaters

E |/O Elements

I Primitives: QMUX

SELECT

oy e My >

I

I

(a) 4-valued Multiplexers with DLCs

SELECT

(b) eq. binary

Table: Operation of the 4-valued Multiplexer

Mux Operation
i/o | DLCO | DLCO | DLCY1 | DLCT1 | DLC2 | DLC2
0 3 0 3 0 0 3
1 0 3 3 0 3 0
2 0 3 0 3 3 0
3 0 3 0 3 3 0

I Primitives: QBUFS

voD3

vDDO
N5 (4x)

GND

(d) €q. binary

IN NO PO N1 P1 N2 P2 N3 | P3 N4 P4 N5 | P5
0 OFF ON OFF ON| ON OFF OFFf ON| ON OFF ON | OFF|
1 OFF ON ON | OFF OFF ON OFF ON| ON OFF ON | OFF|
2 ON OFF ON | OFF OFF ON OFFf ON| ON OFF OFF ON
3 ON OFF ON | OFF| OFF ON ON | OFF OFF ON OFF ON

I rrimitives: Repeater Waveforms

ouT

VSELECT

V1o

V32

Figure: SPICE (ELDO) Simulation results for the Quaternary
Repeater. Waveforms for Vso, Vig & Vseieer illustrates the operation
of the repeater.

: QLUTs

imitives

B rr

OUTPUT

QMUX

INPUT2

QMUX

ISRAM
RAM

- s
“ “
g g
=2} =2}
ERE ERE
RR...RR
Elz Elz

QMUX

RAM
SRAM
SRAM

INPUT 1

Figure: 2-input Quaternary Look-Up Tables (QLUT), with 16

I Primitives: QFFs

clk’ m clk’ rst
rst I]EQ st
C clk,rs
mBZ\
st
Skt Podkast
Dm@astcrjrjjl‘ ‘ Q
—! = ‘ :
‘ ‘ BUF
QMUX Q
""""""" Master Slave

(a) Quaternary Flip-Flop with two master and slave latches,
each comprising of a quaternary repeater and multiplexer.

Primitives:QFFs

Name
10 9

- REsET_CLK . i
75 4

RESET_CLK

> 253

0.0 4

w0l ojo | o
! | tjme (ns)

(b) Waveforms for the FF operation, Reset and clock

is combined into one quaternary signal where level "0’

is reset, and clk oscillates between level '1’ and ’3’

I Primitives:B2Q

vDDI

voD1

Slzvﬁ Syt %‘

Sty s Sj[

SOQV

Sﬁﬁ

r
L

vDD?

7
<

Slyyf

-

%_

vDD;

S4VL

I Primitives:Q2B

Swr
o

Table: Operation of 4-to-2 translator (Q2B),
0(=0 x VDD),1(= § x VDD), 2(=% x VDD), 3(=VDD).

St DLCO DLC1 DLC2 SELECT S0 s1

VDDO VDD3 VDD3 VDD3 1(VDD3) 1(VDD3) 1(VDD3)
VDD1 VDDO VDD3 vDD3 1(VDD3) 0(VDDO) 1(VDD3)
vDD2 VDDO VDDO vDD3 0(VDDO) 1(VDD3) 0(VDDO)
VDD3 VDDO VDDO VDDO 0(VDDO) 0(VDDO) 0(VDDO)

I Overall View: Quaternary FPGA

Q| Q| foll=l'ell~]
ES|[S1S] 1|55
SBOX CBO! SBOX CBO! SBOX
B2Q B2Q
Q2B b " o Q2B
B2Q B2Q
Q2B Q2B
SBOX CBOX SBOX cBo SBOX
B2Q B2Q
Q2B | Q2B
B2Q |||T ! il B2Q
Q2B Q2B
SBOX By SBOX CBO: SBOX
% O roll=l'e]l>]
E=S{SS) EISEES

Figure: Overall QFPGA Architecture.

B rian

Experiments

TELECOM

ParisTech

36/48 COMELEG Sumanta Chaudhuri 16/05/2018 =
I umarta Chaudhuri wHAT

I Modelling Tool: VPR

m Versatile Place & Route: A well known FPGA modelling
and place/route tool.

® VTR: Verilog to Routing
B o includes Synthesis and Packing of binary digital circuits.

I CLB: Binary Vs. Quaternary

QLUT+QFF

NG g |
N | BLE UTI1]

3 |quuT+QFF

BLE 3OUT[NfI]

IN[M’L 3 |QLUT+QFH]

Figure: Configurable Logic Block with M inputs, and N BLEs and the

input X-bar

I CLB: Binary Vs. Quaternary

Table: VTR Architectural Parameters Used in the Experiments

Configurable Logic Block
Parameter Binary Quaternary
Value Transistor Count Value Transistor Count

LUT Input Size 6/(2x5) 548 3 1950
No. Of BLEs 10 5480 10 19500

CLB Outputs 10 - 10 -

CLB Inputs 40 - 30 -

CLB Output Feedback 10 - 10 -
Input XBAR 50x60 6240 30x40 4200
Total - 11720 - 23700

I Routing: Binary Vs. Quaternary

B The size of Switch boxes and Connection Boxes are
determined by VPR.

B i.e often bigger the benchmark circuit: requires more
routing resources.

B We model the timing and capcitances of binary and
quaternary switches.

I Routing: Area Model Parameters

Table: Area Model used in the Experiments.

Binary | Quaternary
ipin_mux_trans_size X X
grid_logic_tile_area | 11720x 23700x
mux_trans_size X X
buf_size X 3x

I Routing: Timing Model Parameters

Table: VTR Timing Model Parameters

Configurable Logic Block

Block Parameter Binary Quaternary

Input Crossbar 10 Delay Constant T ns T ns
Mux 10 Delay Constant Tns T Nns
LUT6 Delay Matrix T ns 2T ns

FF T_Setup - -

FF T_CLOCK_TO_Q - -

Routing Resources

Connection Box C_ipin_cblock C pf C pf
Connection Box T_ipin_cblock T ns 27 ns
SwitchBox/Switchlist Cin C pf 3C pf
SwitchBox/Switchlist Cout C pf C pf
SwitchBox/Switchlist Tdel T ns 2T ns

N Experiments: Benchmarks

® One of the major bottleneck for multiple-valued logic is
absence of synthesis tools.

® \We handcrafted arithmetic benchmarks.

® Structural Benchmarks like Ripple Carry Adders and Array
Multipliers

B |t is also possible to use random benchmarks.

N Experiments: Binary Vs. Quaternary

Bench- Binary FPGA ‘
marks
BLEs Size Chan Area Timing
Routing Logic Total
Adder32 64 2x2 68 42773.5 46880 8.97e4 11.4712
Adder64 128 3x3 130 138054 105480 2.43e5 22.7411
Mult32 2048 11x11 50 5.40e5 1.42e6 1.95e6 53.716
Mult64 8192 22x22 58 1.89e6 5.17e6 7.06e6 110.327
Mult128 | 32768 41x41 80 9.40e6 1.97e7 2.92e7 303.546
Bench- Quaternary FPGA
marks
BLEs| Size Chan Area Timing
Routing Logic Total %Diff. % Diff
Adder32| 32 2x2 44 27286 94800 1.22e5 +36% 11.49 0.0%
Adder64| 64 3x3 60 71336.4 213300| 2.84e5 +16.9%| 22.4717 -0.02%
Mult32 512 8x8 38 2.16e5 1.52e6 | 1.73e6 -12% 48.75 -10.0%
Mult64 2048| 15x15 42 6.83e5 5.33e6 | 6.01e6 -15% 103.521 -6.6%
Mult128 | 8192| 29x29 50 2.87e6 1.99e7 | 2.28e7 -22% 240.726 -21%

N Summary

Why?
B Quternary is near optimum in terms of number
representation.
® Reduces interconnect overhead by a factor of 2.
B Good for both computation and communication.
Summary of Experiments:
B 15% reduction in transistor area.
B 10% reduction in critical path delay.
B 2x reduction in wire routing area.
Future Work
® Development of a MVL synthesis tool.
B Prototype.

I Rcferences

[@ R. Cunha, H. Boudinov, and L. Carro.
Quaternary look-up tables using voltage-mode cmos logic
design.
In Multiple-Valued Logic, 2007. ISMVL 2007. 37th
International Symposium on, pages 56-56, May 2007.

[@ B. Pelloux-Prayer, A. Valentian, B. Giraud, Y. Thonnart, J. P.
Noel, P. Flatresse, and E. Beigné.
Fine grain multi-vt co-integration methodology in utbb fd-soi
technology.
pages 168—173, Oct 2013.

[§ LiShang, Alireza S. Kaviani, and Kusuma Bathala.
Dynamic power consumption in virtex™-ii fpga family.

In Proceedings of the 2002 ACM/SIGDA Tenth International
Symposium on Field-programmable Gate Arrays, FPGA il

X — ParisTech
|
46/48 COMELEC Sumanta Chaudhuri 16/05/2018 =T
-“ . ket =54 i |

B rian

Questions ?

TELECOM

ParisTech

47/48 COMELEG Sumanta Chaudhuri 16/05/2018 =
K umarta Chaudhuri wHAT

I Questions ?

