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Samsung Exynos 9820



  

Qualcomm SnapDragon 



  

Agenda

● CPU
– Micro-Controllers
– Multi Cores

● GPU
● FPGAs
● ASICs 

– Most popular functions can aspire to become ASIC.
– Example ??



  

Agenda

● ASIC Domains
– Telecommunications     ‘60s -now
– Cryptography       ‘60s - now
– Computer Graphics       ‘80s-  now
– Neural Networks           ‘2012 - now



  

Agenda

● Speicific Operator examples

– Telecom
● CRC

● CORDIC

● FFT

● FIR

– Graphics
● Bresenham Algorithm

– AI
● Convolutional Neural Networks

● Alternative Logic Styles

– Asynchronous Logic

– Multi-Valued Logic



CRC : Cyclic Redundancy 
Checksum

● Detection of errors in transmission

● A cyclic polynomial code.

● Every word is a polynomial in GF(2).

● e.g code word 11000101 is

● Every valid code is a multiple of the generator polynomial. (prime 
polynomial)

● All arithmetic is done in GF(2)

 

X7+X 6+0⋅X5+0⋅X 4+0⋅X 3+X 2+0⋅X+1



CRC

● Given a message polynomial M(x) deg. m
● And a generator polynomial G(x) deg. m
● M(x).xn=G(x)P(x)+r(x)    r(x) : remainder polynomial
● Transmit M(x).xn- r(x)

– M(x) is m significant bits , r(x) is in least significant 
bits

● Verify : divide by G(x) and verify that remainder is 0



CRC 
● GSM

● Ethernet/Wifi : 

● WCDMA:

● Bluetooth

● RFID

● Implementation Efficace ?

X 3+X+1

X 32+X26+X23+X 22+X16+X12+X11+X10+X8+X 7+X 5+X 4+X2+X+1

X16+X12+X 5+1

X5+X3+1

X 24+X 23+X6+X5+X+1



Polynomial Division

● Let’s divide

By X+1. 

● What is the method ? 

X7+X 6+0⋅X5+0⋅X 4+0⋅X 3+X 2+0⋅X+1



CRC : Cyclic Redundancy Checksum

Nota bene : 1-bit CRC = parity bit

→ 1011



CRC : Cyclic Redundancy Checksum

Nota bene : 1-bit CRC = parity bit

→ polynomic division remainer

← magma code



CRC Hardware

● CRC  est un division polynomial GF(2)
Décalage a Gauche
Quand MSB=1, faite XOR  avec le diviseur

● LFSR (Linear Feedback Shift Registers) 

● Galois LFSR for Polynomial division in GF(2)

● X ^ 1 = ~X ;  X^0= X

11010011101100 000
1011
01100011101100 000
  1011
  0111011101100 000
    1011
    010111101100 000



  

CORDIC

● Comment calculer le valeur de cos(x) et sin(x) ?

● Comment calculer le valeur de cos(x) et sin(x)  
sans multiplication?



  

CORDIC :
Coordinate Rotation Digital Computer

● Deprettere, E., Dewilde, P., and Udo, R., 
"Pipelined CORDIC Architecture for Fast VLSI 
Filtering and Array Processing," Proc. 
ICASSP'84, 1984, pp. 41.A.6.1-41.A.6.4

● In 2D plane (x,y) → (x',y')
●

F



  

CORDIC



  

CORDIC



  

CORDIC



  

CORDIC



  

Cordic : Structure

x i+1=x i− y i⋅d i⋅2−i

y i+1= y i+x i⋅d i⋅2−i

z i+1=z i−d i⋅tan−1(2−i)



  

FFT

DIT

DIF



  

FFT (Coût Multiplication)

X [k ]=∑
n=0

N−1

x (n) .W N
kn k=0,1,2. ...N W N=e

− j2Π
N

DFT à N point,  Chaque point (X[k], k= 0,1,2…. N) requiers N multiplications.

Nombre de Multiplications Nécessaire :

  

Idée  d’optimisation : (Cooley-Tukey)

Diviser un DFT à N point en Partie Paire et Impaire.

Chaque partie peut être réprésenté comme DFT à N/2 point.

O(N2)



  

FFT (DIT)

X [k ]=∑
m=0

N
2

−1

x (2m).W N
k 2m+∑

m=0

N
2

−1

x (2m+1) .W N
k(2m+1)

X [k ]=∑
m=0

N
2

−1

s1(m)W N
k 2m+ ∑

m=0

N
2

−1

s2(m).W N
k(2m+1)

X [k ]=∑
m=0

N
2

−1

s1(m)W N
2

km+W N
k ∑
m=0

N
2

−1

s2(m) .W N
2

k (m )

X [k ]=S1[k ]+W N
k S2[ k ] k=0,1,2. ...N

Nombre totale de multiplications= 

~50 % d’economie sur les multiplieurs. 

2( N2 )
2

+ N2

W N
k +N /2=−W N

k

W N
K+N=W N

K

WN
2 =W N

2



  

FFT (DIT)

Appliquons cette technique récursivement.

 

 

Nombre. De Multiplicaitons : O(N log (N ))

N ,
N
2
,
N
4
,
N
8

....2

X [k ]=S1[k ]+W N
k S2[ k ] k=0,1,2. ...

N
2

−1

X [k+N /2]=S1[k ]−W N
k S2[ k ] k=0,1,2. ...N



  

FFT example on 8 bits



  

FFT example on 8 bits



  

FFT example on 8 bits



  

FFT example on 8 bits



  

Final architecture



  

FFT example on 8 bits



  

FFT example on 8 points

See also: https://svn.comelec.enst.fr/trusted_computing/courses/SG_ENS/20161122/pdf/fft.sage 

https://svn.comelec.enst.fr/trusted_computing/courses/SG_ENS/20161122/pdf/fft.sage


  

DCT : Discrete Cosine Transform

Used in JPEG image coding.



FIR Filter

● Discrete Convolution.
● where:
●

●  x[n] is the input signal,
●  y[n] is the output signal,
●  N is the filter order; 
●  b_{i} is the value of the impulse response at the i'th instant for 

{\textstyle 0\leq i\leq N}{\textstyle 0\leq i\leq N} of an {\textstyle 
N^{\text{th}}}{\textstyle N^{\text{th}}}-order FIR filter. If the filter 
is a direct form FIR filter then {\textstyle b_{i}}{\textstyle b_{i}} is 
also a coefficient of the filter.



Finite Impulse Response Filter



Finite Impulse Response Filter



  

Bresenham’s Algorithm

f (x , y)≡Ax+By+C=0

y=mx+b

A=Y 1−Y 0

B=−(X1−X0)

C=(X1−X 0)b

Can be re-written as

Where



  

Bresenham’s Algorithm
D=f (x0+1 , y0+

1
2
)−f (x0 , y 0)

D=[ A (x0+1)+B ( y0+
1
2
)+C ]−[Ax0+By0+C ]

D=[ Ax0+By0+C+A+
1
2
B]−[ Ax0+By0+C]

D=A+
1
2
B=Δ y−

1
2

Δ x

ΔD=f (x0+2 , y 0+
3
2
)−f (x0+1 , y0+

1
2
)=A+B=Δ y−Δ x

ΔD=f (x0+2 , y 0+
1
2
)−f (x0+1, y0+

1
2
)=A=Δ y



  

Bresenham’s Algorithm

plotLine(x0, y0, x1, y1)

    dx = x1 - x0
    dy = y1 - y0
    D = 2*dy - dx
    y = y0

    for x from x0 to x1
        plot(x, y)
        if D > 0
            y = y + 1
            D = D - 2*dx
        end if
        D = D + 2*dy



  

AI: CNNs



  

AI: IM2COL

fh fw

fw



  

AI: IM2COL + MatMult



  

AI: Google TPU



  

TPU: Systolic Array



  

Systolic Arrays

M

PE

M

PE PE PE

Why Systolic Architectures? Computer 15(1): 37-46 (1982) H. T. 
Kung



  

Systolic MatMul

b2,2
b 2, 1 b 1, 2
b2,0 b1,1 b0,2
b1,0 b0,1
b0,0

a0,2 a0,1 a0,0

a 1, 2 a 1, 1 a 1, 0

a2,2 a2,1 a2,0

Alignments in time

Rows of A

Columns of B

T = 0



  

Systolic MatMul

b2,2
b 2, 1 b 1, 2
b2,0 b1,1 b0,2
b1,0 b0,1

a0,2 a0,1

a 1, 2 a 1, 1 a 1, 0

a2,2 a2,1 a2,0

Alignments in time

T = 1

b0,0

a0,0
a0,0*b0,0



  

Systolic MatMul

b2,2
b 2, 1 b 1, 2
b2,0 b1,1 b0,2

a0,2

a1,2 a1,1

a2,2 a2,1 a2,0

Alignments in time

T = 2

b1,0

a0,1
a0,0*b0,0

+ a0,1*b1,0

a1,0

a0,0

b0,1

b0,0

a0,0*b0,1

a1,0*b0,0



  

Systolic MatMul

b2,2
b 2, 1 b 1, 2

a1,2

a2,2 a2,1

Alignments in time

T = 3

b2,0

a0,2
a0,0*b0,0

+ a0,1*b1,0
+ a0,2*b2,0

a1,1

a0,1

b1,1

b1,0

a0,0*b0,1
+ a0,1*b1,1

a1,0*b0,0
+ a1,1*b1,0 a1,0

b0,1

a0,0

b0,0

b0,2

a2,0

a1,0*b0,1

a0,0*b0,2

a2,0*b0,0



  

Systolic MatMul

b2,2Alignments in time

T = 4

a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

a1,2

a0,2

b2,1

b2,0

a0,0*b0,1
+ a0,1*b1,1
+ a0,2*b2,1

a1,0*b0,0
+ a1,1*b1,0
+ a1,2*a2,0

a1,1

b1,1

a0,1

b1,0

b1,2

a2,1

a1,0*b0,1
+a1,1*b1,1

a0,0*b0,2
+ a0,1*b1,2

a2,0*b0,0
+ a2,1*b1,0

b0,1

a1,0

b0,2

a2,0 a2,0*b0,1

a1,0*b0,2

a2,2



  

Systolic MatMul

Alignments in time

T = 5

a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

a0,0*b0,1
+ a0,1*b1,1
+ a0,2*b2,1

a1,0*b0,0
+ a1,1*b1,0
+ a1,2*a2,0

a1,2

b2,1

a0,2

b2,0

b2,2

a2,2

a1,0*b0,1
+a1,1*b1,1
+ a1,2*b2,1

a0,0*b0,2
+ a0,1*b1,2
+ a0,2*b2,2

a2,0*b0,0
+ a2,1*b1,0
+ a2,2*b2,0

b1,1

a1,1

b1,2

a2,1 a2,0*b0,1
+ a2,1*b1,1

a1,0*b0,2
+ a1,1*b1,2

b0,2

a2,0 a2,0*b0,2



  

Systolic MatMul

Alignments in time

T = 6

a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

a0,0*b0,1
+ a0,1*b1,1
+ a0,2*b2,1

a1,0*b0,0
+ a1,1*b1,0
+ a1,2*a2,0

a1,0*b0,1
+a1,1*b1,1
+ a1,2*b2,1

a0,0*b0,2
+ a0,1*b1,2
+ a0,2*b2,2

a2,0*b0,0
+ a2,1*b1,0
+ a2,2*b2,0

b2,1

a1,2

b2,2

a2,2 a2,0*b0,1
+ a2,1*b1,1
+ a2,2*b2,1

a1,0*b0,2
+ a1,1*b1,2
+ a1,2*b2,2

b1,2

a2,1 a2,0*b0,2
+ a2,1*b1,2



  

Systolic MatMul

Alignments in time

T = 7

a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

a0,0*b0,1
+ a0,1*b1,1
+ a0,2*b2,1

a1,0*b0,0
+ a1,1*b1,0
+ a1,2*a2,0

a1,0*b0,1
+a1,1*b1,1
+ a1,2*b2,1

a0,0*b0,2
+ a0,1*b1,2
+ a0,2*b2,2

a2,0*b0,0
+ a2,1*b1,0
+ a2,2*b2,0

a2,0*b0,1
+ a2,1*b1,1
+ a2,2*b2,1

a1,0*b0,2
+ a1,1*b1,2
+ a1,2*b2,2

b2,2

a2,2 a2,0*b0,2
+ a2,1*b1,2
+ a2,2*b2,2

Done



  

Logique asynchrone

● Illustration de logique séquentielle sans horloge
● Mise en place d'une signalisation

requête

acquitement

données

signaux de
contrôle factorisés



  

Logique asynchrone

● Illustration de logique séquentielle sans horloge
● Mise en place d'une signalisation



  

Logique asynchrone

● Illustration de logique séquentielle sans horloge
● Mise en place d'une signalisation

Ivan Sutherland,
Turing award 1988

Communications of 
the ACM, June 
1989, Volume 32, 
Number 6.



  

Rendez-vous



  

C-Element : comportemental



  

C-Element : structures en transistors



  

C-Element : structures en transistors



  

C-Element : structures en transistors



  

Micro-pipeline



  

Data flow



  

Latch avec poignée de main



  

Element utile pour MUX / DEMUX



  

MUX



  



  

   I                   J                   K
10.0    0xAB    130.0  0x5E  40.0      0x00
20.0    0x34    10.0    0x4E  21.0      0x01                                            
60.0    0x56   90.0    0xD4  53.0      0x00                                            
90.0    0xD4    60.0    0x56  84.0      0x01                                            
10.0    0x4E    20.0    0x34  22.0     0x00                                            
130.0   0x5E   10.0    0xAB  130.0     0x01 

https://www.edaplayground.com/x/3fCs   



  

DEMUX



  

Latch avec jeton initial



  

Algorithme GCD



  

Validation par simulation



ACCELERATOR DESIGN WITH OPENCL
(ATHENS WEEK 19-24 MARCH, 2018)

Navigate : Space / Arrow Keys |  - Menu |  - Fullscreen |  - Overview |  - Blackout |  - Speaker |  - HelpM F O B S ?



1 / 28



WHAT DO WE KNOW SO FAR ?
There are three types of parallelism

Task Parallelism
Data Parallelism
Pipeline

We saw the reasons for memory stalls and latency.

The techniques to hide latency through Caching.

The Virtual Memory.

[ GitPitch @ github/amusant/tpt39/tmpdev ]



2 / 28



WHAT DO WE KNOW SO FAR ?

We saw the evolution of processors from

Uniprocessor to ...
Multicores with Simultaneous Multi-Threading.

And we said hello to the world from our GPU (Mali-
T628).

[ GitPitch @ github/amusant/tpt39/tmpdev ]



3 / 28



GPU ARCHITECTURE : UNIPROCESSOR

I ns t r uct i on
Fet ch/ Specul at e

I ns t r uct i on

I ns t r uct i on

Decode

Execut e

ALU FPU

Regi s t er s
( Cont ext )

[ GitPitch @ github/amusant/tpt39/tmpdev ]



4 / 28



GPU ARCHITECTURE : EVOLUTION
GPUs took a completely different path of evolution.
Because they live in a embarrasingly data-parallel
environment.
The memory stalls/latency problems are still there.
So are the solutions to hide them.

[ GitPitch @ github/amusant/tpt39/tmpdev ]


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GPU ARCHITECTURE : MIMD
I ns t r uct i on
Fet ch/ Specul at e

I ns t r uct i on

I ns t r uct i on

Decode

Execut e

Regi s t er s
( Cont ext )

FPU

I ns t r uct i on
Fet ch/ Specul at e

I ns t r uct i on

I ns t r uct i on

Decode

Execut e

Regi s t er s
( Cont ext )

FPU

I ns t r uct i on
Fet ch/ Specul at e

I ns t r uct i on

I ns t r uct i on

Decode

Execut e

Regi s t er s
( Cont ext )

FPU

I ns t r uct i on
Fet ch/ Specul at e

I ns t r uct i on

I ns t r uct i on

Decode

Execut e

Regi s t er s
( Cont ext )

FPU

[ GitPitch @ github/amusant/tpt39/tmpdev ]


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GPU Architecture : Evolution

MIMD, but wait, we don't need the mutliple-
instruction streams.
let' get rid of them.

[ GitPitch @ github/amusant/tpt39/tmpdev ]


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GPU ARCHITECTURE : SIMD

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

I ns t r uct i on
Fet ch

I ns t r uct i on
Decode

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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GPU ARCHITECTURE : MORE SIMD

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

I ns t r uct i on
Fet ch

I ns t r uct i on
Decode

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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GPU ARCHITECTURE : MORE SIMD
Let's not forget our old friend Multi-Threading.
Which helped us manage latency.

[ GitPitch @ github/amusant/tpt39/tmpdev ]


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GPU ARCHITECTURE : SIMD WITH MULTI-THREADING.

t0 t1

t2 t3

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

I ns t r uct i on
Execut e

FPU

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

Regi s t er s
( Cont ext )

I ns t r uct i on
Fet ch

I ns t r uct i on
Decode

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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QUIZ
What is the peak performance of this core in G�ops ?

[ GitPitch @ github/amusant/tpt39/tmpdev ]


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GPU ARCHITECTURE : REFINEMENTS

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Memor y

I ns t r uct i on/ Thr ead Schedul er

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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GPU ARCHITECTURE : REFINEMENTS

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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GPU ARCHITECTURE : REFINEMENTS

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

Scr at chPad Memor y

Adding Scratchpad memory, so that threads can
communicate locally.

[ GitPitch @ github/amusant/tpt39/tmpdev ]


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GPU: MULTIPLE SHADER CORES
ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

Scr at chPad Memor y

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

Scr at chPad Memor y

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

Scr at chPad Memor y

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

Scr at chPad Memor y

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

Scr at chPad Memor y

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

Scr at chPad Memor y

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s

I ns t r uct i on/ Thr ead Schedul er

Cache L1

Scr at chPad Memor y

ALUALUALU

ALU ALU ALU ALU

ALU

Conf i gur abl e Cont ext Regi s t er s
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OUR GPU : MALI T628
ARM MidGard family.
Can be con�gures for 4-16 cores.
con�gurable SIMD

2x FP64, 4x FP32, 8x FP16, 2x int64, 4x int32, 8x
int16, 16x int8

Two L1 Caches/ Shader core 16KB
L2 Cache can be con�gured for upto 64KB.
Each core Rated at 17 Flops/cycle. (FP32)
64 byte Cache lines

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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SOURCE: MALI T628
https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-3---the-midgard-shader-core

https://community.arm.com/graphics/f/discussions/6557/mali-t628-gpu-activity-in-streamline
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EXAMPLE HETEROGENEOUS SOCS

CoreLink™ CCI-400 Cache  Coherent Inte rconnect 
128 bit @ up to 0.5 Cortex-A15 frequency

Quad
Cortex-A7

Coherent 
I/O 

device

128b

Mali-T604
Graphics

ADB-400 ADB-400

128b 128b

MMU-400 MMU-400

128b 128b

ACE 

ACE ACE-Lite  + DVM 

ACE-LiteACE-LiteACE-Lite 

ACE-Lite

NIC-400

Other 
Slaves

Other 
Slaves

128b

NIC-400

LCDDMA

Quad 
Cortex- 

A15

128b

ACE 

ACE 

AXI4 

AXI4 
Configurable : AXI4/AXI3/AHB/APB 

Configurable : AXI4/AXI3/AHB

GIC-400

ACE-Lite  + DVM ACE-Lite  + DVM

128b

MMU-400ADB-400 ADB-400

DMC-400

DDR3/2 
LPDDR2/3

ACE-LiteACE-Lite 

PHYPHY

DDR3/2 
LPDDR2/3
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EXPRESSING PARALLEISM
NDRangeKernel
global_work_size() de�nes that total no. of elements.
if each element is independent it is also the number
of work_items.
each work item can be associated with one thread.

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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EXPRESSING PARALLEISM
the global work can be separated into groups.
get_group_id() gives the id of the group.
get_local_id() gives the id of the local work item
within the group.

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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WORK ITEM RELATED FUNCTIONS:
get_work_dim()
get_global_size()
get_global_id()
get_local_size()
get_local_id()
get_num_groups()
get_group_id()
get_global_offset()

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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SYNCHRONIZATION FUNCTIONS: MEM FENCE
mem_fence: all memory accesses preceding
mem_fence must end before starting memory
accesses following mem_fence.
read_mem_fence : only for loads.
write_mem_fence: only for stores.

arguments: CLK_LOCAL_MEM_FENCE: only
load/stores to local memory.
arguments: CLK_GLOBAL_MEM_FENCE: only
load/stores to global memory.

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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SYNCHRONIZATION FUNCTIONS: BARRIER
All work-items in a work-group must execute this
function before the work group can proceed.
Barrier also issues a mem_fence either to
CLK_LOCAL_MEM_FENCE or
CLK_GLOBAL_MEM_FENCE.
There is no way to synchronize work items in
different work groups.

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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LAB WORK 1
Vector addition with size N
Calculate speedup with varying N.
Measure Flops/s.
Calculate the average of a vector.
Calculate the average of a vector using workgroups.
Measure speedup.

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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LAB WORK 2
Write a Matrix multiplication routing with two
matrices of size M x K, K x N.
where M=K=N
measure speed up
use streamline to see various statistics about
Cache/TLB miss.
Measure Flops/S.

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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DEBUGGER: MGD
in a405-xx.enst.fr (desktop) clone the git depot.
source init.sh > /dev/null
module load mali/4.4

mgd

in odroid
source init_odroid.sh
mgddaemon
make debug

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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PERFORMANCE MONITOR: STREAMLINE
run start_gator.sh in tpt39/

cd tpt39; ./start_gator.sh&
in a405-XX.enst.fr

$ source init.sh
$ module load mali/4.4
$ streamline

[ GitPitch @ github/amusant/tpt39/tmpdev ]
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Bits, Trits or Quits ?

What is the optimum radix for representing numbers ?
Radix 10:

• Alphabet (0..9), Width of Word log10(N)

Radix 1:
• Alphabet (0), Width of Word N

Radix 10000:
• Alphabet (0..9999), Width of Word log10(N)

4

Radix r:
• Alphabet (0..r-1), Width of Word w = logr (N)



Bits, Trits or Quits ?

ra
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Figure: Most Economical radix is e (2.718), Binary and Quaternary
are equivalent.



Compute or Communicate?

Algorithms/Methods are either computation bound or
communication bound.
Communication bound methods

• In case of processor: performance is determined by
memory bandwidth

• In case of circuits: performance is determined by
interconnect.

Multi-Valued Logic is efficient for communication. less
wires.
It is also near optimum for number representation.



Cost of Interconnect

Scaling

Figure: Interconnect resistance
doesn’t scale with technology.
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Figure: surface scattering at lower
dimensions. Taken from ITRS
2007



Interconnect Scaling

Chips size gets bigger with every technology node.
More Repeaters need to be inserted to compensate for RC
delay.
Rise in interconnect power consumption.



Interconnect: Possible Solutions

Time Multiplexing ???
Monolithic 3D ?
Optical Interconnect ?
Carbon Nanotube ?
Multi-Valued Signalling ??
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Multiple Valued Signalling

VDD1=0.9V

VDD0=0V VDD0=0V

VDD2=0.9V VDD3=0.9V

VDD1=0.45V

VDD2=0.6V

VDD1=0.3V

VDD0=0V

BINARY TERNARY QUATERNARY

Figure: Multiple Valued Signalling

Reduction of Routing Congestion.
Saving Energy/Bit.
More efficient arithmetic Implementation. (Optimum:
ternary logic)



Multiple Valued Signalling: Energy Savings

Table: Energy for different transitions in a 4-valued signal,
IN0(=0 × vdd),IN1(= 1

3 × VDD), IN2(= 2
3 × VDD), IN3(=VDD).

4-Valued transitions

Transitions Energy

t00,t11 ,t22,t33 0

t01, t12, t23, t32, t21, t10 C × 1
9 × vdd2

t02, t13, t20, t31 C × 4
9 × vdd2

t03, t30 C × vdd2

Av. Energy/Tran 0.27 × Cvdd2

3-Valued transitions

Transitions Energy

t00,t11 ,t22 0

t01, t12, t21, t10 C × 1
4 × vdd2

t02, t20 C × ×vdd2

Av. Energy/Tran 0.33 × Cvdd2

2-Valued transitions

transitions Energy

t00,t11 0

t01, t10 C × vdd2

Av. Energy/Tran 0.5 × Cvdd2



Multi-Valued Logic: Why ?

Why ?
Energy saving in the interconnect.
Reduced routing congestion. 50% for quaternary, 33% for
ternary.
Area saving in the steering logic.

Why Not ?
Increased Complexity of transmitter and receiver.
Reduced noise margin.



Multi-Valued Logic: Why Now ?

FDSOI permits the fine-tuning of Vt .

Oxide

Buried

FD Channel
drain source

Gate Stack

Vb

(a) FDSOI Transistor

Vtp

Vtn

Vdds < Vdd

Vdds > Vdd

Vgnds > Vgnd

Vgnds < Vgnd

(b) Back-biasing

Figure: Brief Overview of FDSOI Technology.
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FDSOI: Advantages

Field Depleted Silicon On Insulator.
From 28nm we have only FDSOI or FINFET.
Improved junction capacitance.
Lower process variation, absence of RDF (Random
Dopant Fluctuation)
FDSOI permits the fine-tuning of Vt , electrically

• Applying back-biasing to back plane.
RVT RBB upto -3V FBB upto +300mv
LVT FBB upto +3V RBB upto -300mv

• By increasing gate length. (Poly-Biasing)



Basic Blocks: DLCs
VDD3

VDD0

P3(RVT)
RBB

FBB

VDD3

VDD0

NO BB

NO BB

VDD3

VDD0

FBB

RBB

VDD0

VDD3

VDD0

VDD3

VDD0

VDD3

DLC1 DLC2

VDD1

VDD2 VDD2

VDD1 VDD1

VDD2

N3(LVT)

Vtn

Vtp

DLC0

N3(LVT)

P3(LVT)

Vtn

Vtp
Vtn

Vtp

P3(RVT)

N3(LVT)

Table: Down-Literal Converters

Down-Literal Converters

input DLC0 DLC1 DLC2

0 3 3 3

1 0 3 3

2 0 0 3

3 0 0 0



DLCs: Comparison with Earlier work

VDD3

VDD0

PMOS Low Doping level

VDD0

VDD3

VDD1

VDD2

NMOS High Doping Level

Vtn

Vtp

DLC0: State of The Art

VDD3

VDD0

P3(RVT)
RBB

FBB

VDD0

VDD3

VDD1

VDD2

N3(LVT)

Vtn

Vtp

DLC0: FDSOI

A basic block similar to inverter, required for multiplexers,
and other circuits.
Earlier implementation propose different dopings of the
PMOS and NMOS.
With FDSOI the Vt can be varied electrically.
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FPGAs Have A Interconnect Problem.

SB CB SB CB SB CB

LAB LAB LAB

LAB LAB LAB

LAB LAB LAB

SB

SB CB SB CB SB CB SB

SB CB SB CB SB CB SB

SB CB SB CB SB CB SB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

I/O I/O I/O

I/O I/O I/O

I/O
I/O

I/O

I/O
I/O

I/O

Vertical Routing 
Channel

Switch Box 
(SB)

Connection 
Box

Horizontal 
Routing Channel

Logic Array 
Block (LAB)

I/O Block

Channel 
Width 

(W)

Routing 
Architecture 

Example



FPGAs: The Interconnect Overhead

Area Breakdown

33

28%

14%
21%
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40% 19%
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25%
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Area-optimized Timing-optimized Balanced

Logic

Intra-Logic Block Routing

Inter-Logic Block Routing (Buffers)

Inter-Logic Block Routing

Configuration (Logic)

Configuration (Routing)

Figure: Area Overhead (A study
published in FPL 2016 [4]).
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Figure: Power consumption
in FPGAS. Taken from [3]



FPGA: Architetcure



FPGA: Logic Architetcure



FPGA: Architetcure



FPGA: Routing Architetcure
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FPGA: Primitives

Lookup Tables
Flip-Flops
Switch Boxes

• multiplexers
• Buffers/ Repeaters

Connection Boxes (basically Multiplexers)
• multiplexers
• Buffers/ Repeaters

I/O Elements



Primitives: QMUX

DLC2

SELECT

DLC0 DLC1

IN3

IN2

IN1

IN0

(a) 4-valued Multiplexers with DLCs

IN1

IN2

IN3

IN0

OUT

SELECT

(b) eq. binary

Table: Operation of the 4-valued Multiplexer

Mux Operation

i/p DLC0 DLC0 DLC1 DLC1 DLC2 DLC2

0 3 0 3 0 0 3

1 0 3 3 0 3 0

2 0 3 0 3 3 0

3 0 3 0 3 3 0



Primitives: QBUFS

VDD0

VDD3

Vtp

Vtn

VDD2

VDD3

Vtp

Vtn

VDD0

VDD1

Vtn

Vtp

VDD3

VDD1 VDD1

VDD3
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IN
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B
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VDD2

FB
B
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B

P5

N5VDD0

VDD3

P3,P4

N3,N4

P0

Vtn

Vtp

N0

P1

N1

(c)

BIT1

BIT0

VDD

GND

(d) eq. binary

IN N0 P0 N1 P1 N2 P2 N3 P3 N4 P4 N5 P5

0 OFF ON OFF ON ON OFF OFF ON ON OFF ON OFF

1 OFF ON ON OFF OFF ON OFF ON ON OFF ON OFF

2 ON OFF ON OFF OFF ON OFF ON ON OFF OFF ON

3 ON OFF ON OFF OFF ON ON OFF OFF ON OFF ON



Primitives: Repeater Waveforms
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Figure: SPICE (ELDO) Simulation results for the Quaternary
Repeater. Waveforms for V32, V10 & VSELECT illustrates the operation
of the repeater.



Primitives: QLUTs
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Figure: 2-input Quaternary Look-Up Tables (QLUT), with 16
configuration points and 5 muxes.



Primitives: QFFs

0

1

2

3

0

1

2

3

clk,rst

Q

Master Slave

clk’,rst

D

B2Q

B2Q
clk’

rst

rst

clk’,rst

clk,rstclk

Dmaster

QBUFQBUFQMUX QMUX

(a) Quaternary Flip-Flop with two master and slave latches,
each comprising of a quaternary repeater and multiplexer.



Primitives:QFFs

RESET_CLK

D

Q

(b) Waveforms for the FF operation, Reset and clock
is combined into one quaternary signal where level ’0’
is reset, and clk oscillates between level ’1’ and ’3’



Primitives:B2Q

S4V L

VDD0 VDD2 VDD3VDD1

S02V L S02V L

S12V LS12V L

S02V LS02V LS02V L S02V L

S12V L S12V LS12V L S12V L



Primitives:Q2B
0

1

1

0

DLC1

DLC2

DLC0
S02V L

S12V L

S
E
L
E
C
T

S4V L

Table: Operation of 4-to-2 translator (Q2B),
0(=0 × VDD),1(= 1

3 × VDD), 2(= 2
3 × VDD), 3(=VDD).

S4VL DLC0 DLC1 DLC2 SELECT S0 S1

VDD0 VDD3 VDD3 VDD3 1(VDD3) 1(VDD3) 1(VDD3)

VDD1 VDD0 VDD3 VDD3 1(VDD3) 0(VDD0) 1(VDD3)

VDD2 VDD0 VDD0 VDD3 0(VDD0) 1(VDD3) 0(VDD0)

VDD3 VDD0 VDD0 VDD0 0(VDD0) 0(VDD0) 0(VDD0)



Overall View: Quaternary FPGA
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Figure: Overall QFPGA Architecture.
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Modelling Tool: VPR

Versatile Place & Route: A well known FPGA modelling
and place/route tool.
VTR: Verilog to Routing

• includes Synthesis and Packing of binary digital circuits.



CLB: Binary Vs. Quaternary

X−BAR
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×
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QLUT+QFF

QLUT+QFF

QLUT+QFF

Figure: Configurable Logic Block with M inputs, and N BLEs and the
input X-bar



CLB: Binary Vs. Quaternary

Table: VTR Architectural Parameters Used in the Experiments

Configurable Logic Block

Parameter Binary Quaternary

Value Transistor Count Value Transistor Count

LUT Input Size 6/(2x5) 548 3 1950

No. Of BLEs 10 5480 10 19500

CLB Outputs 10 - 10 -

CLB Inputs 40 - 30 -

CLB Output Feedback 10 - 10 -

Input XBAR 50x60 6240 30x40 4200

Total - 11720 - 23700



Routing: Binary Vs. Quaternary

The size of Switch boxes and Connection Boxes are
determined by VPR.
i.e often bigger the benchmark circuit: requires more
routing resources.
We model the timing and capcitances of binary and
quaternary switches.



Routing: Area Model Parameters

Table: Area Model used in the Experiments.

Binary Quaternary

ipin_mux_trans_size x x

grid_logic_tile_area 11720x 23700x

mux_trans_size x x

buf_size x 3x



Routing: Timing Model Parameters

Table: VTR Timing Model Parameters

Configurable Logic Block

Block Parameter Binary Quaternary

Input Crossbar IO Delay Constant τ ns τ ns

Mux IO Delay Constant τ ns τ ns

LUT6 Delay Matrix τ ns 2τ ns

FF T_Setup - -

FF T_CLOCK_TO_Q - -

Routing Resources

Connection Box C_ipin_cblock C pf C pf

Connection Box T_ipin_cblock τ ns 2τ ns

SwitchBox/Switchlist Cin C pf 3C pf

SwitchBox/Switchlist Cout C pf C pf

SwitchBox/Switchlist Tdel τ ns 2τ ns



Experiments: Benchmarks

One of the major bottleneck for multiple-valued logic is
absence of synthesis tools.
We handcrafted arithmetic benchmarks.
Structural Benchmarks like Ripple Carry Adders and Array
Multipliers
It is also possible to use random benchmarks.



Experiments: Binary Vs. Quaternary

Bench-
marks

Binary FPGA

BLEs Size Chan Area Timing

Routing Logic Total

Adder32 64 2x2 68 42773.5 46880 8.97e4 11.4712

Adder64 128 3x3 130 138054 105480 2.43e5 22.7411

Mult32 2048 11x11 50 5.40e5 1.42e6 1.95e6 53.716

Mult64 8192 22x22 58 1.89e6 5.17e6 7.06e6 110.327

Mult128 32768 41x41 80 9.40e6 1.97e7 2.92e7 303.546

Bench-
marks

Quaternary FPGA

BLEs Size Chan Area Timing

Routing Logic Total %Diff. % Diff

Adder32 32 2x2 44 27286 94800 1.22e5 +36% 11.49 0.0%

Adder64 64 3x3 60 71336.4 213300 2.84e5 +16.9% 22.4717 -0.02%

Mult32 512 8x8 38 2.16e5 1.52e6 1.73e6 -12% 48.75 -10.0%

Mult64 2048 15x15 42 6.83e5 5.33e6 6.01e6 -15% 103.521 -6.6%

Mult128 8192 29x29 50 2.87e6 1.99e7 2.28e7 -22% 240.726 -21%



Summary

Why?
Quternary is near optimum in terms of number
representation.
Reduces interconnect overhead by a factor of 2.
Good for both computation and communication.

Summary of Experiments:
15% reduction in transistor area.
10% reduction in critical path delay.
2x reduction in wire routing area.

Future Work
Development of a MVL synthesis tool.
Prototype.
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